
Introduction to FFT-based numerical methods
for the homogenization of random materials

Tutorial Handbook Part 2
Bonus exercises

Congratulations. You finalized your Basic Scheme. The following tasks may be
accomplished in indefinite order and you can chose the task you like. Furthermore, you
may get more creative with your programming style.
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1 Acceleration

This exercise is concerned with speeding up your code so you can handle larger geometries.
Complete the following tasks:

1. Consider the ball_32.mha microstructure and monitor your code using a timing
library such as time. Which task requires the most computation time?

2. Typically, large loops (for instance looping over all voxels) require a lot of computation
time. These loops are rather slow in Python, as it is an interpreted language. In order
to speed up these loops, Cython enables you to write C extensions for Python using a
syntax that is very similar to Python. These are then compiled beforehand. Some hints
are in order:

• Start by writing code the same way you would in Python. You can then
"cythonize" the parts of your code you deem too slow.

• You can improve your performance significantly by adding static type declara-
tions (see the small example in the CythonExample folder).

• If you want to run your Cython code, you will have to compile it first. You
tell Cython what to compile by writing a small setup.py file. Then, run
the command python setup.py build_ext --inplace in your terminal to
compile your code. After compilation, you can import the Cython function the
same way you would import normal Python libraries.

• During the compilation, an .html file is generated. Check that file for further
optimization of your code. The file highlights all parts with Python interactions.
In order to speed up your code, you should try to avoid looping over parts with
a lot of Python interactions.

Write Cython extensions to replace your "slow" code, compile them and monitor the
speedup of your code.

3. With your fast code at hand you can investigate larger geometries. Investigate the fiber
reinforced composite structures (in the Microstructures/Fibers folder) and their
solution fields.
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(a) Fiber reinforced composite discretized with
1283 voxels.

(b) εxx component of the strain under macroscop-
ical uniaxial strain state.

2 Additional discretizations

2.1 Introduction

This additional exercise is concerned with implementing additional Γ0-operators. The Γ0-
operators allow you to encode different discretization types, such as Finite Difference or
Finite Element discretizations. Whereas the previously implemented operator is based on
trigonometric collocation, additional finite-difference based operators are available.

Task Implement the two additional discretization methods. Update your code so that
you can easily switch between the three different discretization methods. If you already
accomplished the previous task on acceleration be sure to stick to Cython for your additional
operators.
Test your novel discretizations with an infinite material contrast. Use the ball_32.mha

microstructure and set the Young’s modulus of the inclusion to 0. What do you notice in the
iteration count of your solver for the different discretization choices?

2.2 The Moulinec-Suquet discretization

Let us start with a recap of the implementation of the Moulinec-Suquet discretization you
already realized. First, we precompute the frequency vectors

xfreq = np.fft.fftfreq(N_x)

yfreq = np.fft.fftfreq(N_y)

zfreq = np.fft.rfftfreq(N_z)

With these at hand, the application of the (negative) operator −Γ0 in position [i, j, k] may
be efficiently computed via Algorithm 1. In this form, we normalize the frequency vector
to norm 1 and compute matrix-vector multiplications and outer products efficiently. Pay
attention to Voigt’s notation.
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Algorithm 1 In-place application of −Γ0 for the Moulinec-Suquet discretization

1: ξ ←

xfreq[i]

yfreq[j]

zfreq[k]


2: η ← ξ/‖ξ‖
3: τ ← field[:, i, j, k]

4: f ← τ · η
5: s← f · η
6: u← (−f + 1

2
sη)/µ0

7: ε← 0.5(η ⊗ u+ u⊗ η)

8: field[:, i, j, k]← ε

2.3 The rotated staggered grid discretization

One popular (reduced integration) Finite Element discretization operates on a rotated
staggered grid. In order to apply the non-local Γ-operator, it is convenient to precompute
both the frequency vectors

xfreq = np.fft.fftfreq(N_x)

yfreq = np.fft.fftfreq(N_y)

zfreq = np.fft.rfftfreq(N_z)

and, additionally, the following complex expressions

e_x = np.exp(2j * np.pi * xfreq)

e_y = np.exp(2j * np.pi * yfreq)

e_z = np.exp(2j * np.pi * zfreq)

The evaluation of the operator is performed in the following algorithm, where z̄ denotes the
complex conjugate of the complex number z. Once again, pay attention to Voigt’s notation.

Algorithm 2 In-place application of −Γ0 for the rotated staggered grid discretization

1: ξ ←

(e_x[i] + 1) (e_y[j]− 1) (e_z[k]− 1)

(e_x[i]− 1) (e_y[j] + 1) (e_z[k]− 1)

(e_x[i]− 1) (e_y[j]− 1) (e_z[k] + 1)


2: η ← ξ/‖ξ‖
3: τ ← field[:, i, j, k]

4: f ← τ · η̄
5: s← f · η̄
6: u← (−f + 1

2
sη)/µ0

7: ε← 0.5(η ⊗ u+ u⊗ η)

8: field[:, i, j, k]← ε
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2.4 The staggered grid discretization

A different approach operates on the standard (non-rotated) staggered grid. This
discretization treats shear componets and normal components differently, and some caution
is advised. Similar precomputations to the rotated staggered grid discretization are required,
i.e., the frequencies

xfreq = np.fft.fftfreq(N_x)

yfreq = np.fft.fftfreq(N_y)

zfreq = np.fft.rfftfreq(N_z)

should be used to compute

k_x = np.exp(-2j * np.pi * xfreq)

k_y = np.exp(-2j * np.pi * yfreq)

k_z = np.exp(-2j * np.pi * zfreq)

Algorithm 3 In-place application of −Γ0 for the staggered grid discretization

1: ξ ←

k_x[i]− 1

k_y[j]− 1

k_z[k]− 1


2: η ← ξ/‖ξ‖
3: τ ← field[:, i, j, k]

4: f ←

−τ̂11η1 + τ̂12η̄2 + τ̂13η̄3
τ̂21η̄1 − τ̂22η2 + τ̂23η̄3
τ̂31η̄1 + τ̂32η̄2 − τ̂33η3


5: s← f · η̄
6: u← (−f + 1

2
sη)/µ0

7: ε←

 −u1η̄1 u1η2+u2η1
2

u1η3+u3η1
2

u1η2+u2η1
2

η̄1 −u2η̄2 u3η2+u2η3
2

u1η3+u3η1
2

u3η2+u2η3
2

−u3η̄3


8: field[:, i, j, k]← ε
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3 Fast solvers

3.1 The Barzilai-Borwein method

The implemented Basic Scheme may be interpreted as a gradient descent method with
constant step size 1/α0. The iteration reads

εk+1 = ε̄− 1

α0
Γ : (S(·, εk)− α0 εk).

A significant speedup may be achieved using an adaptive step size strategy

εk+1 = ε̄− 1

αk
Γ : (S(·, εk)− αk εk),

where αk is chosen in every iteration. One promising approach, the Barzilai-Borwein
method, computes the step size via

αk =
〈σ(εk)− σ(εk−1), εk− εk−1〉L2

‖ εk− εk−1 ‖2L2

,

which is evaluated before computing the polarization. For the first iteration, the standard
reference material can be used.

Task Implement the Barzilai-Borwein method (Hint: Voigt notation!) by updating your
reference material to accept a varying αk. Compare the iteration count with that of the Basic
Scheme.
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3.2 The Conjugate Gradient method

An optimal solver for linear problems is given by the CG method:

Algorithm 4 Linear CG (C, ε̄,maxit,tol)

1: G← Γ : C : ε̄ . Compute σ̄ = 〈C : ε̄〉Q
2: D ← −G
3: [r,res]← [‖G‖, ‖G‖/‖σ̄‖]
4: k ← 0

5: while k < maxit and res > tol do
6: k ← k + 1

7: rold ← r

8: Z ← Γ : C : D . [4σ̄, Ẑ(0)]← [Ẑ(0), 0]

9: α← r2/(D,Z)L2

10: ε← ε+αD

11: σ̄ ← σ̄ + α4σ̄
12: res← r/‖σ̄‖
13: G← G+ αZ

14: r← ‖G‖
15: γ ← r2/r2

old

16: D ← −G+ γ D

17: end while
18: ε← ε+ε̄

19: return ε, σ̄

Task Implement the CG method. In addition to your strain field, you need to keep the
fields D,Z and G in memory. Furthermore, set your reference material α0 = 1 so you do not
have to change your Γ−operator. Compare the CG method with the Basic Scheme.
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4 Additional physics – thermal conductivity

Within the previously implemented framework of solving the Lipmann-Schwinger equation
for elasticity, additional physical settings may be studied. For thermal conductivity
problems, we consider the temperature gradient s ∈ R3 with 〈s〉Q = s̄, as well as the heat flux
q = As with heat conductivity A. For simplicity, let us restrict to an isotropic conductivity,
i.e., A(x) = κ(x) Id. The Basic Scheme for heat conductivity reads

sk+1 = s̄− Γ0(Ask − A0sk)

and looks very similar to the one for elasticity. In order to change the ’physics’ of your code
you need the following incredients:

• Your Field should be of dimension 3×Nx ×Ny ×Nz

• An isotropic material law is applied as q = κs.

• The reference material of a two-phase material computes as α0 = 0.5(κ0 + κ1).

• There is no need for Voigt/Mandel notation, which simplifies matters . . .

• Your non-local operator Γ0 reduces to

Algorithm 5 In-place application of −Γ0 for conductivity problems

1: ξ ←

xfreq[i]

yfreq[j]

zfreq[k]


2: η ← ξ/‖ξ‖
3: τ ← field[:, i, j, k]

4: f ← τ · η/α0

5: field[:, i, j, k]← −fη

• All other operations, such as the Material Applicator or your solvers, should work
without any adjustments.
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