
Introduction to FFT-based numerical methods
for the homogenization of random materials

Tutorial Handbook Part 1
The Basic Scheme

Contents

1 The data structure 2

1.1 Microstructure images . 2

1.2 Linear elastic materials . 2

1.3 The Field class . 3

1.4 The material applicator . 4

1.5 Writing a field to a file . 4

1.6 Fast Fourier Transform (FFT) . 5

1.7 Additional hints . 6

2 The Basic Scheme 7

2.1 The non-local operator . 7

2.2 Implementation steps for the non-local operator 7

2.3 The residual . 9

2.4 Bringing it all together . 9

Introduction

The goal of the exercise sessions of this workshop is that you implement your own
FFT-based micromechanics solver. To do so, you may follow this Exercise Handbook, which
contains two parts.
In this first part, we implement the necessary data structure, the nonlocal operator and finish
with the implementation of the Basic Scheme.
The second part contains various steps to optimize your code for real-world use and to adapt
to other problems, such as thermal conductivity problems. This handbook contains various
checkpoints for you to verify your code.

Checkpoint 0 Before you start, be sure to have a basic knowledge of the Python
programming language as well as a general idea of how object-oriented programming
works. If not, please go through the introductory material you received beforehand.

Université Gustave Eiffel, Champs-sur-Marne 1 S. Brisard, M. Schneider, F. Willot

Introduction to FFT-based numerical methods
for the homogenization of random materials

1 The data structure

1.1 Microstructure images

Usually, effective properties of mi-
crostructured materials are com-
puted on a microstructure image.
This image tells us exactly how the
composite is built up, i.e., at which
material is present at each voxel (a
3D pixel). The image may come
from a µ-CT scan of a real composite
or might be synthetically generated
(how to do that is out of the scope
of this course and for now - we
just magically have these images at
hand). You have been provided
with some microstructure images,
which are stored as .mha files in
the Microstructures subfolder of
FFT_Solver_Template. Take a
peek at them by opening these files
in Paraview. An example of a mi-
crostructure is shown in Figure 1.

Figure 1: Slice through a cubic 3D microstructure
image with a single spherical inclusion. The two
different materials (or colors) are distinguished by
integer values. Here, 0 refers to the blue (matrix)
material and 1 refers to the red material of the sphere.

Checkpoint 1 Create a microstructure object

Microstructure = MicrostructureImage()

Microstructure.readColors(microstructure_path)

with the provided MicrostructureImage class and take a look at
microstructure.colors, which is a 3D array containing the data which material
can be found at voxel [i, j, k]. As a reference, for ball_32.mha, the color at [0,0,0]
should be 0 and for [16,16,16] it should be 1.

1.2 Linear elastic materials

For the time being, let us restrict to linear elastic isotropic materials which are fully
characterized by their Young’s modulus E and Poisson’s ratio ν. Create a class
LinearElasticIsotropicMaterial that reads the material parameters in the
constructor and stores them along with Lamé’s constants λ and µ and the bulk modulus

Université Gustave Eiffel, Champs-sur-Marne 2 S. Brisard, M. Schneider, F. Willot

Introduction to FFT-based numerical methods
for the homogenization of random materials

K (see https://en.wikipedia.org/wiki/Shear_modulus for the conversion
formulas). This class should have a method computeStress that computes the stress for
any given strain at one voxel.
Additionally, we need to implement a reference material. Create a class
ReferenceMaterial that inherits from the linear elastic material, but is initialized
with a list/dictionary of all materials. For the basic scheme, the optimal reference material
of a two phase microstructure containing isotropic phases with bulk and shear moduli
computes as

eigenvalues = [3*material_0.K, 2*material_0.mu, 3*material_1.K, 2*material_1.

mu]

alpha_0 = 0.5*(max(eigenvalues) + min(eigenvalues))

referenceMaterial.mu = 0.5*alpha_0

referenceMaterial.la = 0.

Be sure to choose either the Voigt or Mandel notation and stick with it for all exercises
this week. For a refresher on the notation of strain and stress tensors, refer to the hints
in Section 1.7.

Checkpoint 2 Check your implementation with the following code (values are rounded):

material_0 = LinearElasticIsotropicMaterial(E = 2.1e3, nu = 0.3)

material_1 = LinearElasticIsotropicMaterial(E = 72e3, nu = 0.22)

referenceMaterial = ReferenceMaterial(material_0,material_1)

strain = np.array([1,0,0.1,0,0,0.5])

stress = material_1.computeStress(strain)

tau = stress - referenceMaterial.computeStress(strain)

print(stress)

print(tau)

==

array([84519.9, 25503.5, 31405.2, 0. , 0. , 14754.1])

array([19426.5, 25503.5, 24895.8, 0. , 0. , -1519.3])

1.3 The Field class

In contrast to classical finite element schemes, FFT-based methods avoid assembling
matrices and rather perform the critical operations in-place, i.e., without the need to allocate
additional memory. In particular, rather large number of degrees of freedom may be treated
by FFT-based methods.
To allevate the burden of handling the FFT application yourself, we provide a Field class
which is located in the file Field/Field.py. This class performs the FFT in-place, i.e., the
transformed and the real field share the same space in memory.
Objects of the Field class will be used to store our strain or stress fields. Based on
the microstructure image with a shape Nx ×Ny ×Nz, objects of the field have the shape

Université Gustave Eiffel, Champs-sur-Marne 3 S. Brisard, M. Schneider, F. Willot

https://en.wikipedia.org/wiki/Shear_modulus

Introduction to FFT-based numerical methods
for the homogenization of random materials

6×Nx ×Ny ×Nz in real space. Such field contain the six components of either the stress or
the strain field in Voigt/Mandel notation, see section 1.7
The entries of our Field can be accessed either in real space via real_field or after
transformation in frequency space via cpx_field. After initializing, the Field comprises
only zeros. A uniform initial value may be assigned to all voxels using the inialize

method.

Checkpoint 3 Check the following functionality:

bc_strain = [0.1,0,0,0,0,0]

myfield = Field(microstructure.colors)

myfield.initialize(bc_strain)

print(f"Initial strain: {myfield.real_field[:,0,0,0]}")

print(f"Initial strain: {myfield.real_field[:,5,3,4]}")

1.4 The material applicator

With our Field object, our materials and reference material, as well as our microstructure
image at hand, we are ready to code the application of the material law. Create a class
MaterialApplicator that stores the individual materials and microstructure image. The
class should have a method computeStress that takes a Field object and returns the
corresponding stress field out of place´. Make sure that you apply the correct material law at
each voxel.
Additionally, the MaterialApplicator should handle your in-place computation of the
polarization τ(x) = S(x, ε(x)) − C0 : ε(x). Overwriting a field on the currently occupied
memory takes the form

myfield.real_field[:] = stress - referenceMaterial.computeStress(myfield)

in Python.

1.5 Writing a field to a file

To take a look at the stress field we just created as well as to save our computational ouptut in
the end, we may write a field to a file and investigate it in Paraview. Use the PyEVTKOutput
class from Image/WriteOutput.py.

Checkpoint 4 Test your MaterialApplicator with the constant stress field we just
created:

mapl = MaterialApplicator(microstructure, material_1, material_2)

stress_field = mapl.compute_stress_field(myfield)

Université Gustave Eiffel, Champs-sur-Marne 4 S. Brisard, M. Schneider, F. Willot

Introduction to FFT-based numerical methods
for the homogenization of random materials

mapl.computePolarization(myfield)

Output the stress_field and inspect it by opening the output.vti file with Paraview.

output = PyEVTKOutput(output_folder)

output.addStress(stress_field)

output.write()

The stresses (stress_field.real_field) vary from voxel to voxel, depending on the
material at the given location.

1.6 Fast Fourier Transform (FFT)

As we mentioned earlier, the Field class is associated with an in-place FFT which
transforms the field from real space to the frequency domain. This is essential in order
to apply the nonlocal Γ operator, whose action is local in Fourier space.
The fft method transforms your field to the frequency domain. You may access this
complex field .cpx_field. This field has four indices, and the last three indices correspond
to the frequency instead of the voxel position. Caution has to be taken, as the complex
field has a smaller number of entries on its last axis (the shape is 6×Nx ×Ny × (Nz/2 + 1))
because a complex number comprises two real numbers). To get back to the spatial domain,
we may use the Inverse Fast Fourier Transform (IFFT), which can be accessed by the ifft
method. You can check whether your field is currently in the frequency or spatial domain
by accessing the status property of the Field class.

Checkpoint 5 Transform your field to the Fourier space. Take a look at the complex field.

myfield.fft()

print(f’Status after FFT: {myfield.status}’)

print(f’Shape: {myfield.cpx_field.shape}’)

In the lectures, the zeroth frequency stores the mean value of the field. However, in the
chosen FFT framework, this is handled differently (for performance reasons). To extract the
mean value you need to divide the value at frequency zero by the voxel count:

print(f’strain_0 = {myfield.cpx_field[:,0,0,0]/np.prod(Microstructure.colors.

shape)}’)

Implementing the nonlocal Γ operator requires you to know the accomodating Fourier
frequencies for each index. It is useful to precompute the frequency vectors

xfreq = np.fft.fftfreq(Microstructure.colors.shape[0])

yfreq = np.fft.fftfreq(Microstructure.colors.shape[1])

zfreq = np.fft.rfftfreq(Microstructure.colors.shape[2]).

With these vectors at hand, the frequency corresponding to our field at [i,j,k] may be
computed as

Université Gustave Eiffel, Champs-sur-Marne 5 S. Brisard, M. Schneider, F. Willot

Introduction to FFT-based numerical methods
for the homogenization of random materials

xi = np.array([xfreq[i], yfreq[j], zfreq[k]]).

1.7 Additional hints

Several hints and remarks might be helpful for the implementation:

• A useful form of Hooke’s law σ = C : ε for isotropic linear elastic materials is

σ = 2µ ε+λtr(ε) Id, Id = diag(1, 1, 1)

with Lamé constants µ and λ.

• We further restrict to a reference material of the form C0 = α0 Id, i.e., µ0 = 0.5α0 and
λ0 = 0. Be aware of Voigt/Mandel notation (see next item).

• Before you start your implementation, you should decide whether you want to operate
in Voigt or Mandel notation. The solution you were given is written in Voigt notation.

Voigt notation:

ε =̂

ε11
ε22
ε33

2 ε23
2 ε13
2 ε12

and σ =̂

σ11
σ22
σ33
σ23
σ13
σ12

.

Mandel notation:

ε =̂

ε11
ε22
ε33√
2 ε23√
2 ε13√
2 ε12

and σ =̂

σ11
σ22
σ33√
2σ23√
2σ13√
2σ12

.

Université Gustave Eiffel, Champs-sur-Marne 6 S. Brisard, M. Schneider, F. Willot

Introduction to FFT-based numerical methods
for the homogenization of random materials

2 The Basic Scheme

2.1 The non-local operator

We are taking large steps towards the implementation of the Basic Scheme. Let us recap: At
this moment, we can

• read a microstructure image,

• create a strain/stress field,

• apply a linear elastic material law,

• compute the stress polarization,

• perform an FFT on a field,

• write a field to a file.

Let us take a look at a single iteration of the Basic Scheme (Algorithm 1).

Algorithm 1 A single iteration of the Basic Scheme

1: σ(x)← C(x) : ε(x) (elastic stress)
2: τ(x)← σ(x)− C0 : ε(x) (polarization)
3: τ̂ ← FFT(τ)

4: ε̂(0)← ε̄ (macroscopic boundary condition)
5: ε̂(ξ)← −Γ0(ξ) : τ̂(ξ) ∀ξ 6= 0 (nonlinear operator)
6: ε← IFFT(ε̂)

Apparently, there is still one key ingredient missing: the non-local operator Γ0. For a given
reference material with Lamé constants λ0 and µ0 , applying the operator Γ0 to a symmetric
field S with Ŝ = FFT(S) reads

Γ̂0 : S(ξ) = ξ ⊗s
[(

Id

µ0‖ξ‖2
− µ0 + λ0

µ0(2µ0 + λ0)

ξ ⊗ ξ
‖ξ‖4

)
ξ · Ŝ(ξ)

]
(1)

with the frequency vector ξ 6= 0. By⊗s we denote the symmetric dyadic product, i.e., a⊗sb =

1/2(a⊗ b+ b⊗ a).

2.2 Implementation steps for the non-local operator

The expression (1) for Γ0 may seem a little daunting at first. However, we can decompose
the application of Γ0 into a series of rather simple steps. It seems beneficial to define a
GammaOperator class which has knowledge about the dimension of your problem (i.e.,

Université Gustave Eiffel, Champs-sur-Marne 7 S. Brisard, M. Schneider, F. Willot

Introduction to FFT-based numerical methods
for the homogenization of random materials

colors.shape) and your reference material. Thus, you can precompute the frequencies once
and for all, and define a method which encodes the application of Γ0 for all frequencies.
Keep in mind that your field S, which is a stress polarization, is stored in some kind of Voigt
or Mandel notation. Additionally be aware that we are dealing with complex-valued arrays.
You may, for instance, create a complex numpy array with six entries as follows:

complex_zeros = np.zeros(6, dtype=np.complex128)

To compute the application of Γ0 for a single frequency, implement the following three steps:

1. As Ŝ(ξ) is symmetric, ξ · Ŝ(ξ) = Ŝ(ξ) · ξ is a simple matrix-vector product

f̂ = Ŝ(ξ) · ξ.

2. We denote the Green’s operator G0 by

Ĝ0(ξ) = − Id

µ0‖ξ‖2
+

µ0 + λ0

µ0(2µ0 + λ0)

ξ ⊗ ξ
‖ξ‖4

, or Ĝ0
ab(ξ) = − δab

µ0‖ξ‖2
+

µ0 + λ0

µ0(2µ0 + λ0)

ξaξb
‖ξ‖4

in tensor and index notation, respectively. Hence we may write the next step as

û = −Ĝ0(ξ) · f̂ or ûa = −Ĝ0
ab(ξ)f̂b,

i.e., another matrix-vector product.

3. Last but not least, we compute the symmetrized dyadic product

Γ̂0 : S(ξ) = ξ ⊗s û, or Γ̂0 : Sab(ξ) =
1

2
(ξaûb + ξbûa),

which is our final result.

Additionally, we need to set the correct mean value, i.e. ε̂(0) = ε̄, corresponding to the
macroscopic boundary condition. Note that with the chosen FFT implementation, a factor
of Nx ·Ny ·Nz is required. Remember to apply Γ0 for every frequency.

Checkpoint 6 To test your implementation, perform a single step of the Basic Scheme
(Algorithm 1) with a prescribed strain (ε̄) of [0.1,0,0,0,0,0] on the simple laminate
microstructure 27_voxels_2_colors.mha, see Figure 2. Material 0 has the parameters
E = 2.1 GPa and ν = 0.3 and material 1 has the parameters E = 72 GPa and ν = 0.22. The
optimal reference material is given by α0 = 65.093 GPa.
First, compute the polarization, i.e., the difference between the actual stress and the stress
obtained from the reference stiffness in-place (see Line 1, Algorithm 1). Then perform the
FFT and apply Γ0 as well as the boundary condition. Finally apply the IFFT. Check with the
following results:

σ[:, 0, 0, 0] = [28.26923077, 12.11538462, 12.11538462, 0., 0., 0.]

τ [:, 2, 0, 0] = [171.07998559, 231.8501171, 231.8501171, 0., 0., 0.] before FFT

τ̂ [:, 1, 0, 0] = [−7143.7,−1977.6,−1977.6, 0., 0., 0.] (real components of cpx_field after FFT)

ε[:, 0, 0, 0] = [0.01812929, 0., 0., 0., 0., 0.] (after IFFT).

Université Gustave Eiffel, Champs-sur-Marne 8 S. Brisard, M. Schneider, F. Willot

Introduction to FFT-based numerical methods
for the homogenization of random materials

Figure 2: Slice view through the middle of one of the simpler 3D microstructures
(27_voxels_2_colors.mha). This is a laminate consisting of a 3× 3× 3 grid, with an
uneven distribution of the materials.

2.3 The residual

The last ingredient to finalize the implementation of the basic scheme is a convergence
criterion. The Basic Scheme is considered as converged provided the evaluated stress field
σ is sufficiently divergence free. This may be quantified via

‖C0 : (εk+1− εk)‖
‖〈σ(εk)〉Q‖

< tol, (2)

where C0 denotes the reference material and the norm ‖ · ‖ is arises from the inner product
(S, T) = 1

|Q|

∫
Q
S : T dx.

It might be sensible to define a Residual class. Furthermore, it is useful to cache the
previous iterate of ε.

2.4 Bringing it all together

The complete Basic Scheme is summarized in Algorithm 2. For efficiency reasons the
quantity 〈σ〉Q can be computed without additional effort after Line 5 of Algorithm 2 via
〈σ〉Q = τ̂(0) + α0 ε̄ (keeping in mind both the Voigt notation, as well as the normalization
factor for mean values in the frequency domain).

Checkpoint 7 To validate your complete Basic Scheme, use the same parameters as in
Checkpoint 6. Additionally, use a tolerance of tol = 10−5. The converged ε11 strain is

Université Gustave Eiffel, Champs-sur-Marne 9 S. Brisard, M. Schneider, F. Willot

Introduction to FFT-based numerical methods
for the homogenization of random materials

Algorithm 2 The Basic Scheme

1: while k < maxit and res > tol do
2: εold ← ε

3: σ(x)← C(x) : ε(x)

4: τ(x)← σ(x)− C0 : ε(x)

5: τ̂ ← FFT(τ)

6: ε̂(0)← ε̄

7: ε̂(ξ)← −Γ0(ξ) : τ̂(ξ)

8: ε← IFFT(ε̂)

9: res← α0
‖ ε− εold ‖L2

‖〈σ〉Y ‖L2

10: end while

shown in Figure 3 and the converged solution (after ≈ 24) iterations should look like this:

ε[:, 0, 0, 0] = [0.0281, 0., 0., 0., 0., 0.] (rounded)

ε[:, 2, 0, 0] = [0.001, 0., 0., 0., 0., 0.] (rounded)

〈σ〉Q = [79.3, 26.2, 26.2, 0., 0., 0.] MPa.

Figure 3: ε11 on a slice of the 3D microstructure (27_voxels_2_colors.mha).

You might notice that your implementation appears to be quite slow when you scale up
the problem size (for instance by considering the ball_32.mha microstructure). We will
handle this problem, as well as the implementation of additional solvers and discretizations
in Part 2 of the Tutorial Handbook.

Université Gustave Eiffel, Champs-sur-Marne 10 S. Brisard, M. Schneider, F. Willot

	The data structure
	Microstructure images
	Linear elastic materials
	The Field class
	The material applicator
	Writing a field to a file
	Fast Fourier Transform (FFT)
	Additional hints

	The Basic Scheme
	The non-local operator
	Implementation steps for the non-local operator
	The residual
	Bringing it all together

