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Random homogenization

Macroscopic scale

𝐿 M

Mesoscopic scale

𝐿 m

Microscopic scale

𝐿𝜇

Separation of scales
𝐿𝜇 ≪ 𝐿m ≪ 𝐿M

Source: Structurae, BGEA Labo and Aménagements Déco Lafarge
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https://structurae.net/fr/ouvrages/viaduc-de-millau
http://bgea-labo.fr/?page_id=340
https://beton-deco.lafarge.fr/solutions/gamme-artevia/gamme-artevia-poli-beton-poli-decoratif-effet-marbre


What is homogenization?
Homogenization is the process of replacing the complex
microstructure (cementitious matrix + aggregates)
with an “equivalent”, homogeneous material.
The goal is to establish the (quantitative) rule that relates
the geometry andmechanical properties of the constituants
to themacroscopic mechanical properties.
At the scale of the structure (the pylons of the cable‐stayed bridge),
material heterogeneities (aggregates, …) are ignored.
The response of the structure is computed as if it was homogeneous.
Effective (macroscopic) linear elastic properties

𝞂(𝐱) = 𝗖(𝐱) ∶ 𝝴(𝐱) ⇒ 〈𝞂〉 = 𝗖eff ∶ 〈𝝴〉

Effective properties are found at the mesoscopic scale,
experimentally or from an upscaling prediction
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From random to periodic homogenization

A conceptual gap that will be discussed by F. Willot (Lecture 7)
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Some structures are indeed periodic

Waffle slab (source: Holedeck)
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https://holedeck.com/plugdeck-e-instalaciones/
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Experimental characterization
(top‐down approach)

Rigid plate, no friction

𝛿 (prescribed displacement)

Stress‐free boundary

Rigid, fixed plate, no friction

𝐹

𝐿

Macroscopic variables
Macro. stress: 𝐹/𝐴
Macro. strain: 𝛿/𝐿
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Compression test on a concrete sample
(Courtesy S. Bahafid, S. Ghabezloo)
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Upscaling prediction
(bottom‐up approach)

“Corrector” problem reproduces physical experiment in‐silico!
The unit‐cell

Ω = (0, 𝐿1) × ⋯ × (0, 𝐿𝑑)

Field equations

൞
div𝞂 = 𝟎
𝞂 = 𝗖 ∶ 𝝴

𝝴 = 𝘀𝘆𝗺𝗴𝗿𝗮𝗱𝐮

Periodic boundary conditions

ቊ 𝐮(𝐱) − 𝝴 ⋅ 𝐱 is Ω‐periodic
𝞂(𝐱) ⋅ 𝐧(𝐱) is Ω‐skew‐periodic ⟺ ቊ𝐮(𝐱 + 𝐿𝑖 𝐞𝑖) = 𝐮(𝐱) + 𝐿𝑖 𝝴 ⋅ 𝐞𝑖

𝞂(𝐱 + 𝐿𝑖 𝐞𝑖) ⋅ 𝐞𝑖 = 𝞂(𝐱) ⋅ 𝐞𝑖
(no summation on 𝑖)
S. Brisard — Introduction: the Green operator and the LS equation — Introduction to FFT‐based numerical methods for homogenization 11



Post‐processing the effective stiffness
Macroscopic strain is prescribed!

〈𝝴〉 = 𝝴

The corrector problem is linear!
There exists 𝗟 such that 〈𝞂〉 = 𝗟 ∶ 𝝴 = 𝗟 ∶ 〈𝝴〉 ⇒ 𝗟 = 𝗖eff

The homogenization workflow
Solve corrector problem for 6 independent load cases

𝝴 = 𝘀𝘆𝗺൫𝐞𝑖 ⊗𝐞𝑗൯
Find the components of the effective stiffness

𝐶𝑖𝑗𝑘𝑙 = 〈𝜎𝑖𝑗〉
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Introducing eigenstresses

⎧
⎪

⎨
⎪
⎩

div𝞂 = 𝟎
𝞂(𝐱 + 𝐿𝑖 𝐞𝑖) ⋅ 𝐞𝑖 = 𝞂(𝐱) ⋅ 𝐞𝑖

𝝴 = 𝘀𝘆𝗺𝗴𝗿𝗮𝗱𝐮
𝐮(𝐱 + 𝐿𝑖 𝐞𝑖) = 𝐮(𝐱) + 𝐿𝑖 𝝴 ⋅ 𝐞𝑖

𝞂 = 𝗖 ∶ 𝝴 + 𝞏
Loading parameters

𝝴 ∈ 𝒯: symmetric, second‐order tensor
𝞏 ∈ 𝒯(Ω): symmetric, second‐order tensor field
(with square‐integrable coefficients)

Eigenstresses?
A very cheap extension
Useful for: thermoelasticity, poroelasticity, elastoplasticity, …
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Displacements are of no importance
For homogenization purposes, only 𝞂 and 𝝴matter!

The subspace of self‐equilibrated stresses

𝞂 ∈ 𝒮(Ω) ⟺ ቊ div𝞂 = 𝟎
𝞂(𝐱 + 𝐿𝑖 𝐞𝑖) ⋅ 𝐞𝑖 = 𝞂(𝐱) ⋅ 𝐞𝑖

The subspace of compatible strains

𝝴 ∈ ℰ(Ω) ⟺ there exists 𝐮 such that ቊ 𝝴 = 𝘀𝘆𝗺𝗴𝗿𝗮𝗱𝐮
𝐮(𝐱 + 𝐿𝑖 𝐞𝑖) = 𝐮(𝐱)

Equivalent formulation of the corrector problem

Find 𝞂 ∈ 𝒮(Ω) and 𝝴 ∈ 𝝴 + ℰ(Ω) such that 𝞂 = 𝗖 ∶ 𝝴 + 𝞏 (v1)

Find 𝝴 ∈ 𝝴 + ℰ(Ω) such that 𝗖 ∶ 𝝴 + 𝞏 ∈ 𝒮(Ω) (v2)
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Abstracting the corrector problem

The abstract prestressed corrector problem

𝒫(𝗖,𝞏, 𝝴) ቊ Given 𝝴 ∈ 𝒯 and𝞏 ∈ 𝒯(Ω)
Find 𝝴 ∈ 𝝴 + ℰ(Ω) such that 𝗖 ∶ 𝝴 + 𝞏 ∈ 𝒮(Ω)

Axioms
1. Linearity: 𝒮(Ω) and ℰ(Ω) are vector subspaces of 𝒯(Ω)
2. 𝒮(Ω) contains the constant stress fields
3. Strain control: for all 𝝴 ∈ ℰ(Ω), 〈𝝴〉 = 0
4. Hill–Mandel lemma: 〈𝞂 ∶ 𝝴〉 = 𝟬 for all 𝞂 ∈ 𝒮(Ω) and 𝝴 ∈ ℰ(Ω)
5. Well‐posedness: 𝒫(𝗖,𝞏, 𝝴) always has a unique solution

(ellipticity condition on 𝗖)
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The Green operator for strains

𝒫(𝗖,𝞏, 𝝴) ቊ Given 𝝴 ∈ 𝒯 and𝞏 ∈ 𝒯(Ω)
Find 𝝴 ∈ 𝝴 + ℰ(Ω) such that 𝗖 ∶ 𝝴 + 𝞏 ∈ 𝒮(Ω)

Definition [1–3]
The Green operator 𝝘 associated with the (possibly heterogeneous) material
𝗖 is the mapping 𝝘∶ 𝒯(Ω) ⟶ ℰ(Ω) such that

𝝴 = −𝝘(𝞏) is the solution to 𝒫(𝗖,𝞏, 𝝴 = 𝟬)

Straightforward properties
𝝘 is a linear operator
〈𝝘(𝞏)〉 = 𝟬 for all𝞏 ∈ 𝒯(Ω)
The solution to 𝒫(𝗖,𝞏, 𝝴 ≠ 𝟬) is 𝝴 = 𝝴 − 𝝘(𝞏) when 𝗖 is homogeneous!

[1] J. Korringa, Journal of Mathematical Physics 1973, 14, 509–513.
[2] R. Zeller, P. H. Dederichs, Physica Status Solidi (B) 1973, 55, 831–842.
[3] E. Kröner in Topics in Applied ContinuumMechanics, (Eds.: J. L. Zeman, F. Ziegler), Springer Verlag Wien, Vienna, 1974, pp. 22–38.
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Properties of the 𝝘 operator

𝝘(𝞂) = 𝟬 for all 𝞂 ∈ 𝒮(Ω)

〈𝞏1 ∶ 𝝘(𝞏2)〉 = 〈𝝘(𝞏1) ∶ 𝞏2〉 for all𝞏1, 𝞏2 ∈ 𝒯(Ω)

𝝘ൣ𝗖 ∶ 𝝘(𝞏)൧ = 𝝘(𝞏) for all𝞏 ∈ 𝒯(Ω)

TODO: write proof
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The Lippmann–Schwinger equation (1/2)
Introduce a homogeneous reference material 𝗖0 with Green operator 𝝘0

Stress‐polarization
𝞃 = 𝞂 − 𝗖0 ∶ 𝝴 = ൫𝗖 − 𝗖0൯ ∶ 𝝴 + 𝞏 ⇒ 𝗖 ∶ 𝝴 +𝞏 = 𝗖0 ∶ 𝝴 + 𝞃

Equivalent formulations of the corrector problem

Find 𝝴 ∈ 𝝴 + ℰ(Ω) such that 𝗖 ∶ 𝝴 + 𝞏 ∈ 𝒮(Ω)

Find ቊ𝝴 ∈ 𝝴 + ℰ(Ω)
𝞃 ∈ 𝒯(Ω) such that ቊ

𝗖0 ∶ 𝝴 + 𝞃 ∈ 𝒮(Ω)
𝞃 = ൫𝗖 − 𝗖0൯ ∶ 𝝴 + 𝞏

Find 𝝴, 𝞃 ∈ 𝒯(Ω) such that ቊ
𝝴 = 𝝴 − 𝝘0(𝞃)

𝞃 = ൫𝗖 − 𝗖0൯ ∶ 𝝴 + 𝞏
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The Lippmann–Schwinger equation (2/2)

Equivalent formulation of the corrector problem

Find 𝝴, 𝞃 ∈ 𝒯(Ω) such that ቊ
𝝴 = 𝝴 − 𝝘0(𝞃)

𝞃 = 𝞂 − 𝗖0 ∶ 𝝴 = ൫𝗖 − 𝗖0൯ ∶ 𝝴 + 𝞏

Strain‐based form of LS equation [1–3]

Find 𝝴 ∈ 𝒯(Ω) such that ቊ𝝴 + 𝝘0(𝞂 − 𝗖0 ∶ 𝝴) = 𝝴
𝞂 = 𝗖 ∶ 𝝴 + 𝞏

[1] J. Korringa, Journal of Mathematical Physics 1973, 14, 509–513.
[2] R. Zeller, P. H. Dederichs, Physica Status Solidi (B) 1973, 55, 831–842.
[3] E. Kröner in Topics in Applied ContinuumMechanics, (Eds.: J. L. Zeman, F. Ziegler), Springer Verlag Wien, Vienna, 1974, pp. 22–38.
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Non‐linearities
To be further discussed during the week!

Non‐linear elasticity [1]

Find 𝝴 ∈ 𝒯(Ω) such that ቊ𝝴 + 𝝘0൫𝞂 − 𝗖0 ∶ 𝝴൯ = 𝝴
𝞂 = ℱ(𝝴)

Generalized standard materials
Use successive linearizations à la Newton–Raphson [2]

or condensed pseudo‐potentials [3, 4]

Geometric non‐linearities
Similar formulation with the 𝗙, 𝗣 (Piola I) pair [5]

[1] H. Moulinec, P. Suquet, Comptes rendus de l’Académie des sciences. Série II Mécanique physique chimie astronomie 1994, 318, 1417–1423.
[2] L. Gélébart, R. Mondon‐Cancel, Computational Materials Science 2013, 77, 430–439.
[3] N. Lahellec, P. Suquet, Journal of the Mechanics and Physics of Solids 2007, 55, 1932–1963.
[4] M. Schneider, D. Wicht, T. Böhlke, Computational Mechanics 2019, 64, 1073–1095.
[5] M. Kabel, T. Böhlke, M. Schneider, Computational Mechanics 2014, 54, 1497–1514.
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LS as a fixed‐point problem

Find 𝝴 ∈ 𝒯(Ω) such that 𝝴 + 𝝘0ൣ൫𝗖 − 𝗖0൯ ∶ 𝝴൧ = 𝝴

Standard linear problem
൫𝐼 + 𝐻൯ ⋅ 𝑥 = 𝑏 ⟺ 𝑥 = ൫𝐼 − 𝐻 + 𝐻2 − 𝐻3 +⋯൯ ⋅ 𝑏

= 𝑏 − 𝐻 ⋅ ൣ𝑏 − 𝐻 ⋅ ൫𝑏 − 𝐻⋯൯൧

Fixed‐point iterations
𝑥0 = 𝑏 and 𝑥𝑛+1 = 𝑏 − 𝐻 ⋅ 𝑥𝑛

Conditional convergence
Converges if ‖𝐻‖ < 1!
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The “basic” scheme [1, 2]
Fixed‐point iterations for the LS equation

𝝴0 = 𝝴 and ቊ
𝞂𝑛 = ℱ(𝝴𝑛)

𝝴𝑛+1 = 𝝴 − 𝝘0൫𝞂𝑛 − 𝗖0 ∶ 𝝴𝑛൯

Only conditionally convergent! [3, 4]

A classical simplification [1, 2]

𝝴0 = 𝝴 and ቊ 𝞂𝑛 = ℱ(𝝴𝑛)
𝝴𝑛+1 = 𝝴𝑛 − 𝝘0(𝞂𝑛)

TODO: write proof!

[1] H. Moulinec, P. Suquet, Comptes rendus de l’Académie des sciences. Série II Mécanique physique chimie astronomie 1994, 318, 1417–1423.
[2] H. Moulinec, P. Suquet, Computer Methods in Applied Mechanics and Engineering 1998, 157, 69–94.
[3] J. C. Michel, H. Moulinec, P. Suquet, International Journal for Numerical Methods in Engineering 2001, 52, 139–160.
[4] H. Moulinec, P. Suquet, G. W. Milton, International Journal for Numerical Methods in Engineering 2018, 114, 1103–1130.
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Time to take a step back…
Reference material?

For the LS equation to be of use, 𝝘0 must be known
Reference material must be homogeneous! (see next slides)

Solve first, then discretize?
In principle, fixed‐point iterations is a viable solution procedure
But unknowns are fields that require spatial discretization

Discretize first, then solve?
Spatial discretization (e.g. Galerkin) leads to a linear system [1, 2]
Use any (matrix‐free) linear solver [3, 4]
Allows convergence analysis wrt discretization parameter [1, 2, 5]

[1] S. Brisard, L. Dormieux, Computer Methods in Applied Mechanics and Engineering 2012, 217–220, 197–212.
[2] J. Vondřejc, J. Zeman, I. Marek, Computers & Mathematics with Applications 2014, 68, 156–173.
[3] J. Zeman et al., Journal of Computational Physics 2010, 229, 8065–8071.
[4] S. Brisard, L. Dormieux, Computational Materials Science 2010, 49, 663–671.
[5] M. Schneider,Mathematical Methods in the Applied Sciences 2015, 38, 2761–2778.
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Fourier series in a nutshell (1/2)
Input data is a periodic function;

output data is an infinite, discrete set of numbers

Multi‐indices (tuples)
𝑚 = (𝑚1, … ,𝑚𝑑), 𝑛 = (𝑛1, … , 𝑛𝑑): frequency indices
𝑝 = (𝑝1, … , 𝑝𝑑), 𝑞 = (𝑞1, … , 𝑞𝑑): cell indices (pixels, voxels)

Discrete wave vectors over unit‐cell Ω = (0, 𝐿1) × ⋯ × (0, 𝐿𝑑)

𝐤𝑛 =
2𝜋𝑛1
𝐿1

𝐞1 +⋯+ 2𝜋𝑛𝑑
𝐿𝑑

𝐞𝑑

Fourier coefficients of a periodic function

�̃�𝑛
def= 1

|Ω| න𝐱∈Ω
𝑓(𝐱) 𝑒−𝑖𝐤𝑛⋅𝐱 d𝑥1…d𝑥𝑑

Extends to tensor fields!
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Fourier series in a nutshell (2/2)
Basic properties

〈𝗧〉 = �̃�0 ෧𝗴𝗿𝗮𝗱𝗧𝑛 = �̃�𝑛 ⊗ 𝑖𝐤𝑛 ෧𝗱𝗶𝘃𝗧𝑛 = �̃�𝑛 ⋅ 𝑖𝐤𝑛

Inversion (under mild regularity conditions)

𝑓(𝐱) = 
𝑛∈ℤ𝑑

�̃�𝑛 𝑒𝑖𝐤𝑛⋅𝐱

Plancherel theorem and Parseval’s identity

〈𝑓∗ 𝑔〉 = 
𝑛∈ℤ𝑑

�̃�∗𝑛 �̃�𝑛 〈|𝑓|2〉 = 
𝑛∈ℤ𝑑

|�̃�𝑛|2

Circular convolution theorem
෧𝑓⋆ 𝑔𝑛 = �̃�𝑛 �̃�𝑛 with 𝑓 ⋆ 𝑔(𝐱) def= 1

|Ω| න𝐲∈Ω
𝑓(𝐱 − 𝐲) 𝑔(𝐲)d𝑦1…d𝑦𝑑
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What should we expect?
𝝘0 is a translation‐invariant, linear operator

Integral representation of the 𝝘0 linear operator

𝝴 = −𝝘0(𝞃) 𝝴(𝐱) = − 1
|Ω| නΩ

𝗤0(𝐱, 𝐲) ∶ 𝞃(𝐲)d𝑦1…d𝑦𝑑

Translation invariance

𝝴(𝐱) = − 1
|Ω| නΩ

𝗤0(𝐱 − 𝐲) ∶ 𝞃(𝐲)d𝑦1…d𝑦𝑑

Circular convolution theorem
�̃�𝑛 = −�̃�0,𝑛 ∶ �̃�𝑛

Note
�̃�0 = 𝟬 since 〈𝝴〉 = 𝟬
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Fourier expansion of Green operator (1/3)

Use Fourier expansions of all mechanical fields

⎧

⎨
⎩

𝐮(𝐱)
𝝴(𝐱)
𝞂(𝐱)
𝞃(𝐱)

⎫

⎬
⎭
= 

𝑛∈ℤ𝑑

⎧

⎨
⎩

�̃�𝑛
�̃�𝑛
�̃�𝑛
�̃�𝑛

⎫

⎬
⎭
𝑒𝑖𝐤𝑛⋅𝐱

Fourier coefficients of the Green operator

�̃�𝑛 = −�̂�∞0 (𝐤𝑛) ∶ �̃�𝑛 with �̂�∞0 (𝐤) = 𝗜 ∶ ൣ𝐤⊗ ൫𝐤 ⋅ 𝗖0 ⋅ 𝐤൯
−1 ⊗𝐤൧ ∶ 𝗜

𝐼𝑖𝑗𝑘𝑙 =
1
2 ൫𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘൯

�̂�∞0 (𝐤) does not depend on ‖𝐤‖!
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Fourier expansion of Green operator (2/3)
Rewrite BVP in Fourier space

div𝞂 = 𝟎 −−−−−−→ �̃�𝑛 ⋅ 𝑖𝐤𝑛 = 𝟎 (1)
𝞂 = 𝗖0 ∶ 𝝴 + 𝞃 −−−−−−→ �̃�𝑛 = 𝗖0 ∶ �̃�𝑛 + �̃�𝑛 (2)
𝝴 = 𝘀𝘆𝗺𝗴𝗿𝗮𝗱𝐮 −−−−−−→ �̃�𝑛 = 𝘀𝘆𝗺(�̃�𝑛 ⊗ 𝑖𝐤𝑛) (3)

(𝗖0 = const. is crucial!)

Combine (2) and (3)
�̃�𝑛 = 𝗖0 ∶ �̃�𝑛 + �̃�𝑛
�̃�𝑛 = 𝘀𝘆𝗺(�̃�𝑛 ⊗ 𝑖𝐤𝑛)

ቋ ⇒ �̃�𝑛 = ൫𝗖0 ⋅ 𝑖𝐤𝑛൯ ⋅ �̃�𝑛 + �̃�𝑛

Plug into (1)
�̃�𝑛 ⋅ 𝑖𝐤𝑛 = 𝟎 ⇒ ൫𝐤𝑛 ⋅ 𝗖0 ⋅ 𝐤𝑛൯ ⋅ �̃�𝑛 = 𝑖�̃�𝑛 ⋅ 𝐤𝑛
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Fourier expansion of Green operator (3/3)

General expression of displacement

�̃�𝑛 = 𝑖൫𝐤𝑛 ⋅ 𝗖0 ⋅ 𝐤𝑛൯
−1 ⋅ �̃�𝑛 ⋅ 𝐤𝑛

= 𝑖ൣ൫𝐤𝑛 ⋅ 𝗖0 ⋅ 𝐤𝑛൯
−1 ⊗𝐤𝑛൧ ∶ �̃�𝑛

= 𝑖ൣ൫𝐤𝑛 ⋅ 𝗖0 ⋅ 𝐤𝑛൯
−1 ⊗𝐤𝑛൧ ∶ ൫𝗜 ∶ �̃�𝑛൯

= 𝑖൛ൣ൫𝐤𝑛 ⋅ 𝗖0 ⋅ 𝐤𝑛൯
−1 ⊗𝐤𝑛൧ ∶ 𝗜ൟ ∶ �̃�𝑛

General expression of strain
�̃�𝑛 = 𝘀𝘆𝗺൫𝑖𝐤𝑛 ⊗ �̃�𝑛൯ = 𝗜 ∶ ൫𝑖𝐤𝑛 ⊗ �̃�𝑛൯ = −�̂�∞0 (𝐤𝑛) ∶ �̃�𝑛

with
�̂�∞0 (𝐤) = 𝗜 ∶ ൣ𝐤⊗ ൫𝐤 ⋅ 𝗖0 ⋅ 𝐤൯

−1 ⊗𝐤൧ ∶ 𝗜
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Isotropic reference material

𝗖0 = 2𝜇0ቀ
1 + 𝜈0
1 − 2𝜈0

𝗝 + 𝗞ቁ 𝗝 = 1
3𝝳⊗ 𝝳 𝗞 = 𝗜 − 𝗝

‖𝐭‖= 1 ∶ 𝐭 ⋅ 𝗖0 ⋅ 𝐭 = 𝜇0ቀ𝝳 +
1

1 − 2𝜈0
𝐭 ⊗ 𝐭ቁ

൫𝐭 ⋅ 𝗖0 ⋅ 𝐭൯
−1 = 1

𝜇0
ቈ𝝳 − 1

2൫1 − 𝜈0൯
𝐭 ⊗ 𝐭

Remember that 𝗽 = 𝐭⊗ 𝐭 and 𝗾 = 𝝳 − 𝐭⊗ 𝐭 are orthogonal projectors

𝗽 ∶ 𝗽 = 𝗽 𝗾 ∶ 𝗾 = 𝗾 𝗽 ∶ 𝗾 = 𝗾 ∶ 𝗽 = 𝟬

൞
Γ̂∞0,𝑖𝑗ℎ𝑙(𝐤) =

𝛿𝑖ℎ𝑡𝑗𝑡𝑙 + 𝛿𝑖𝑙𝑡𝑗𝑡ℎ + 𝛿𝑗ℎ𝑡𝑖𝑡𝑙 + 𝛿𝑗𝑙𝑡𝑖𝑡ℎ
4𝜇0

−
𝑡𝑖𝑡𝑗𝑡ℎ𝑡𝑙

2𝜇0൫1 − 𝜈0൯
𝐭 = 𝐤/‖𝐤‖

Applies to 3D and plane strain elasticity!
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The Green operator in the real space
Integral expression of the Green operator

𝝴 = −𝝘0(𝞃) 𝝴(𝐱) = − 1
|Ω| නΩ

𝗤0(𝐱 − 𝐲) ∶ 𝞃(𝐲)d𝑦1…d𝑦𝑑

Formal expression using Fourier series

𝗤0(𝐫) = 
𝑛∈ℤ𝑑

൛𝗜 ∶ ൣ𝐤𝑛 ⊗ ൫𝐤𝑛 ⋅ 𝗖0 ⋅ 𝐤𝑛൯
−1 ⊗𝐤𝑛൧ ∶ 𝗜ൟᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

�̂�∞0 (𝐤𝑛)

𝑒𝑖𝐤𝑛⋅𝐫

Formal expression using Poisson summation formula [1]

𝗤0(𝐫) = 
𝑛∈ℤ𝑑

𝝘∞0 (𝐫 + 𝑛1𝐿1𝐞1 +⋯+ 𝑛𝑑𝐿𝑑𝐞𝑑)

Non convergent series – Use at your own risk!
[1] M. Zecevic, R. A. Lebensohn, International Journal for Numerical Methods in Engineering 2021, 122, 7536–7552.
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Conclusion

Summary of Lecture 1
The “corrector” problem

Formal definition of the Green operator

The Lippmann–Schwinger (LS) equation

The “basic scheme” and the need for spatial discretization

Derivation of the Green operator

In Lecture 2
Consistent Galerkin discretization of the LS equation
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Thank you for your attention!
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https://sbrisard.github.io
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