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The stress‐polarization based LS equation
Remember: equivalent formulation of the corrector problem

Find 𝝴, 𝞃 ∈ 𝒯(Ω) such that ቊ
𝝴 = 𝝴 − 𝝘0(𝞃)

𝞃 = 𝞂 − 𝗖0 ∶ 𝝴 = ൫𝗖 − 𝗖0൯ ∶ 𝝴 + 𝞏

Polarization‐based form of LS equation [1]

Find 𝞃 ∈ 𝒯(Ω) such that ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃 + 𝝘0(𝞃) = 𝝴 + ൫𝗖 − 𝗖0൯

−1 ∶ 𝞏

Getting rid of eigenstresses

Find 𝞃 ∈ 𝒯(Ω) such that ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃 + 𝝘0(𝞃) = 𝝴

𝝴 ∈ 𝒯(Ω) possibly heterogeneous!

[1] J. Willis, Journal of the Mechanics and Physics of Solids 1977, 25, 185–202.
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Weak form of the LS equation
1. Start from strong form
Find 𝞃 ∈ 𝒯(Ω) such that, for all 𝐱 ∈ Ω:

ൣ𝗖(𝐱) − 𝗖0(𝐱)൧
−1 ∶ 𝞃(𝐱) + 𝝘0(𝞃)(𝐱) = 𝝴(𝐱)

2. Multiply by arbitrary test function
Find 𝞃 ∈ 𝒯(Ω) such that, for all 𝐱 ∈ Ω and 𝝷 ∈ 𝒯(Ω):

𝝷(𝐱) ∶ ൣ𝗖(𝐱) − 𝗖0(𝐱)൧
−1 ∶ 𝞃(𝐱) + 𝝷(𝐱) ∶ 𝝘0(𝞃)(𝐱) = 𝝴(𝐱) ∶ 𝝷(𝐱)

3. Take volume average over Ω
Find 𝞃 ∈ 𝒯(Ω) such that, for all 𝝷 ∈ 𝒯(Ω)

〈𝝷 ∶ ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃〉 + 〈𝝷 ∶ 𝝘0(𝞃)〉 = 〈𝝴 ∶ 𝝷〉
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Galerkin discretization of the LS equation
The initial variational problem
Find 𝞃 ∈ 𝒯(Ω) such that, for all 𝝷 ∈ 𝒯(Ω)

〈𝝷 ∶ ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃〉 + 〈𝝷 ∶ 𝝘0(𝞃)〉ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
𝑎(𝞃,𝝷)

= 〈𝝴 ∶ 𝝷〉ᇣᇧᇤᇧᇥ
𝓁(𝝷)

The approximation space
𝒯𝑁(Ω) ⊂ 𝒯(Ω): finite dimension subspace
𝑁: discretization parameter (to be defined)

The discretized variational problem
Find 𝞃𝑁 ∈ 𝒯𝑁(Ω) such that, for all 𝝷𝑁 ∈ 𝒯𝑁(Ω)

〈𝝷𝑁 ∶ ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃𝑁〉 + 〈𝝷𝑁 ∶ 𝝘0(𝞃𝑁)〉 = 〈𝝴 ∶ 𝝷𝑁〉
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The approximation subspace (1/2)
Discretization over a grid

Regular grid of size 𝑁 = (𝑁1, … , 𝑁𝑑) over unit‐cell Ω

Grid spacing: ℎ𝑖 = 𝐿𝑖/𝑁𝑖, total number of cells: 𝒩 = 𝑁1…𝑁𝑑
Numbering of cells
𝒫 = {0,… ,𝑁1 − 1} × … × {0,… ,𝑁𝑑 − 1}

Cell average

〈𝒬〉𝑝
def= 1

ℎ1…ℎ𝑑
න
𝐱∈Ω𝑝

𝒬(𝐱)d𝑥1…d𝑥𝑑

Average over whole unit‐cell

〈𝒬〉 = 1
𝒩 

𝑝∈𝒫
〈𝒬〉𝑝
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The approximation subspace (2/2)

Definition of 𝒯𝑁(Ω)
Space of cell‐wise constant, 2nd‐order, symmetric tensors

number of dofs = dim𝒯𝑁 = 1
2𝒩𝑑൫𝑑 + 1൯

Trial and test functions defined by their cell‐values
𝞃𝑁(𝐱) = 𝞃𝑁𝑝 and 𝝷𝑁(𝐱) = 𝝷𝑁𝑝 (𝐱 ∈ Ω𝑝)

Cell‐averages of trial and test functions
〈𝞃𝑁〉𝑝 = 𝞃𝑁𝑝 and 〈𝝷𝑁〉𝑝 = 𝝷𝑁𝑝
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Evaluating 𝓁 over 𝒯𝑁(Ω)

𝓁(𝝷) = 〈𝝴 ∶ 𝝷〉

𝓁(𝝷𝑁) = 1
𝒩 

𝑝∈𝒫
〈𝝷𝑁 ∶ 𝝴〉𝑝 =

1
𝒩 

𝑝∈𝒫
𝝷𝑁𝑝 ∶ 〈𝝴〉𝑝 =

1
𝒩 

𝑝∈𝒫
𝝷𝑁𝑝 ∶ 𝝴𝑁𝑝

𝝴𝑁𝑝
def= 〈𝝴〉𝑝 = 𝝴 + 〈൫𝗖 − 𝗖0൯

−1 ∶ 𝞏〉𝑝

𝝴𝑁 can be seen as a cell‐wise constant tensor field!

𝓁(𝝷𝑁) = 〈𝝴𝑁 ∶ 𝝷𝑁〉
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Evaluating 𝑎 over 𝒯𝑁(Ω) (1/3)

𝑎(𝞃, 𝝷) = 〈𝝷 ∶ ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃〉 + 〈𝝷 ∶ 𝝘0(𝞃)〉

〈𝝷𝑁 ∶ ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃𝑁〉 = 1

𝒩 
𝑝∈𝒫

〈𝝷𝑁 ∶ ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃𝑁〉𝑝

= 1
𝒩 

𝑝∈𝒫
𝝷𝑁𝑝 ∶ 〈൫𝗖 − 𝗖0൯

−1〉𝑝 ∶ 𝞃𝑁𝑝

= 1
𝒩 

𝑝∈𝒫
𝝷𝑁𝑝 ∶ ൫𝗖𝑁𝑝 − 𝗖0൯

−1 ∶ 𝞃𝑁𝑝

𝗖𝑁𝑝
def= 𝗖0 + ൣ〈൫𝗖 − 𝗖0൯

−1〉𝑝൧
−1

〈𝝷𝑁 ∶ ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃𝑁〉 = 〈𝝷𝑁 ∶ ൫𝗖𝑁 − 𝗖0൯

−1 ∶ 𝞃𝑁〉
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Evaluating 𝑎 over 𝒯𝑁(Ω) (2/3)

𝑎(𝞃, 𝝷) = 〈𝝷 ∶ ൫𝗖 − 𝗖0൯
−1 ∶ 𝞃〉 + 〈𝝷 ∶ 𝝘0(𝞃)〉

〈𝝷𝑁 ∶ 𝝘0(𝞃𝑁)〉 =
1
𝒩 

𝑝∈𝒫
〈𝝷𝑁 ∶ 𝝘0(𝞃𝑁)〉𝑝 =

1
𝒩 

𝑝∈𝒫
𝝷𝑁𝑝 ∶ 〈𝝘0(𝞃𝑁)〉𝑝

Introducing the discrete Green operator
Let 𝝶𝑁𝑝 = 〈𝝘0(𝞃𝑁)〉𝑝: cell‐values of 𝝶𝑁 ∈ 𝒯𝑁(Ω)
The mapping 𝞃𝑁 ↦ 𝝶𝑁 is an endomorphism over 𝒯𝑁(Ω)
This endomorphism is the discrete Green operator 𝝘𝑁0
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Evaluating 𝑎 over 𝒯𝑁(Ω) (3/3)
Formal definition of the discrete Green operator

𝝘𝑁0 ∶ ቊ
𝒯𝑁(Ω) ⟶ 𝒯𝑁(Ω)

𝞃𝑁 ↦ 𝝶𝑁 such that 𝝶𝑁𝑝 = 〈𝝘0(𝞃𝑁)〉𝑝

Cell‐average of (the opposite of) the strain induced by a
cell‐wise constant eigenstress

Going back to the bilinear form

〈𝝷𝑁 ∶ 𝝘0(𝞃𝑁)〉 =
1
𝒩 

𝑝∈𝒫
𝝷𝑁𝑝 ∶ 〈𝝘0(𝞃𝑁)〉𝑝 =

1
𝒩 

𝑝∈𝒫
𝝷𝑁𝑝 ∶ 𝝶𝑁𝑝

= 1
𝒩 

𝑝∈𝒫
⟨𝝷𝑁 ∶ 𝝶𝑁⟩𝑝 = ⟨𝝷𝑁 ∶ 𝝶𝑁⟩ = ⟨𝝷𝑁 ∶ 𝝘𝑁0 (𝝶𝑁)⟩
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The discrete LS equation

Exact evaluation of the linear and bilinear forms

𝓁(𝝷𝑁) = ⟨𝝴𝑁 ∶ 𝝷𝑁⟩
𝑎(𝞃𝑁, 𝝷𝑁) = ⟨𝝷𝑁 ∶ ൫𝗖𝑁 − 𝗖0൯

−1 ∶ 𝞃𝑁⟩ + ⟨𝝷𝑁 ∶ 𝝘𝑁0 (𝝶𝑁)⟩

Discrete variational problem
Find 𝞃𝑁 ∈ 𝒯𝑁(Ω) such that, for all 𝝷𝑁 ∈ 𝒯𝑁(Ω)

⟨𝝷𝑁 ∶ ൫𝗖𝑁 − 𝗖0൯
−1 ∶ 𝞃𝑁⟩ + ⟨𝝷𝑁 ∶ 𝝘𝑁0 (𝝶𝑁)⟩ = ⟨𝝴𝑁 ∶ 𝝷𝑁⟩

The associated linear system

൫𝗖𝑁 − 𝗖0൯
−1 ∶ 𝞃𝑁 + 𝝘𝑁0 (𝞃𝑁) = 𝝴𝑁
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Announcing the Fast Fourier Transform
Formal definition of the discrete Green operator

𝝘𝑁0 ∶ ቊ
𝒯𝑁(Ω) ⟶ 𝒯𝑁(Ω)

𝞃𝑁 ↦ 𝝶𝑁 such that 𝝶𝑁𝑝 = 〈𝝘0(𝞃𝑁)〉𝑝

Translation‐invariance
〈𝝘0(𝞃𝑁)〉𝑝 = 

𝑞∈𝒫
𝝘𝑁0,𝑝,𝑞 ∶ 𝞃𝑁𝑞 = 

𝑞∈𝒫
𝝘𝑁0,𝑝−𝑞 ∶ 𝞃𝑁𝑞

𝝘0,𝑝 ∶ 𝞃0 is the (opposite of the) average strain in cell 𝑝
induced by the eigenstress 𝞃0 in the (0, … , 0) cell.

This looks like a job for
the Fast Fourier Transform!

S. Brisard — Consistent discretization of the LS equation — Introduction to FFT‐based numerical methods for homogenization 17



On the discrete Fourier transform (1/2)
Input and output data are finite sets of numbers

(𝑥𝑝)𝑝 and (�̂�𝑛)𝑛 with 0 ≤ 𝑝𝑖 , 𝑛𝑖 < 𝑁𝑖 and 𝑖 = 1,… , 𝑑

Definition

�̂�𝑛
def= 

𝑝∈𝒫
𝑥𝑝𝑈𝑁,∗𝑛𝑝 with 𝑈𝑁𝑛

def= expቂ2𝑖𝜋ቀ𝑛1𝑁1
+⋯+ 𝑛𝑑

𝑁𝑑
ቁቃ

Output is a discrete, periodic series: �̂�𝑛+𝑚𝑁 = �̂�𝑛

Implementation: fast Fourier transform (FFT)
𝒪(𝑁 log𝑁) rather than 𝒪(𝑁2)

Note

ቊ𝑛 + 𝑝
𝑛𝑝 should be understood as the tuple ቊ(𝑛1 + 𝑝1, … , 𝑛𝑑 + 𝑝𝑑)

(𝑛1𝑝1, … , 𝑛𝑑𝑝𝑑)
S. Brisard — Consistent discretization of the LS equation — Introduction to FFT‐based numerical methods for homogenization 18



On the discrete Fourier transform (2/2)
Inversion

𝑥𝑝 =
1
𝒩 

𝑛∈𝒫
�̂�𝑛𝑈𝑁𝑛𝑝

Input can also be seen as a discrete,
periodic series (𝑥𝑝+𝑞𝑁

def= 𝑥𝑝).

Plancherel theorem


𝑝∈𝒫

𝑥∗𝑝 𝑦𝑝 =
1
𝒩 

𝑛∈𝒫
�̂�∗𝑛 �̂�𝑛

Circular convolution theorem

ෟ𝑥⋆ 𝑦𝑛 = �̂�𝑛 �̂�𝑛 with (𝑥 ⋆ 𝑦)𝑝
def= 

𝑞∈𝒫
𝑥𝑝−𝑞 𝑦𝑞
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DFTs and the discrete Green operator
Definition of the discrete Green operator

𝝶𝑁 = 𝝘𝑁0 (𝞃𝑁) such that 𝝶𝑁𝑝 = 〈𝝘0(𝞃𝑁)〉𝑝
Translation‐invariant expression

〈𝝘0(𝞃𝑁)〉𝑝 = 
𝑞∈𝒫

𝝘𝑁0,𝑝−𝑞 ∶ 𝞃𝑁𝑞

Introduce DFT
�̂�𝑁0,𝑛 = DFT𝑛൫𝝘𝑁0,•൯

Use circular convolution theorem
𝝶𝑁 = DFT−1൫�̂�𝑁0 ∶ �̂�𝑁൯ = DFT−1ൣ�̂�𝑁0 ∶ DFT(𝞃𝑁)൧

Note that we still don’t know the �̂�𝑁0,•!!!
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Pseudo‐implementation (1/2)

class DiscreteGreenOperator:
def __init__(self, mu0, nu0, grid_shape):

self.mu0 = mu0 # Elastic constants of
self.nu0 = nu0 # reference material
self.C0 = ... # Stiffness as a matrix
self.grid_shape = grid_shape
self.dim = len(grid_shape)
self.spatial_axes = tuple(range(self.dim))

def cell_indices(self):
ranges = map(range, self.spatial_axes)
return itertools.product(*ranges)

# ... To be continued...
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Pseudo‐implementation (2/2)
class DiscreteGreenOperator:

# ... Continued...

def fourier_mode(self, n):
# Return n-th Fourier mode as a matrix
#
# !!! WE STILL NEED TO DERIVE THESE GUYS !!!
#

def apply(self, tau):
tau_hat = np.fftn(tau, axes=self.spatial_axes)
eta_hat = np.empty_like(tau_hat)
for n in self.cell_indices():

eta_hat[n] = self.fourier_mode(n) @ tau_hat[n]
return np.ifftn(eta_hat, axes=self.spatial_axes)
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What we have shown so far
The discretized LS equation

൫𝗖𝑁 − 𝗖0൯
−1 ∶ 𝞃𝑁 + 𝝘𝑁0 (𝞃𝑁) = 𝝴𝑁

𝝴𝑁𝑝 = 𝝴 + 〈൫𝗖 − 𝗖0൯
−1 ∶ 𝞏〉𝑝

𝗖𝑁𝑝 = 𝗖0 + ൣ〈൫𝗖 − 𝗖0൯
−1〉𝑝൧

−1

𝝘𝑁0 (𝞃𝑁) = DFT−1ൣ�̂�𝑁0 ∶ DFT(𝞃𝑁)൧

Notes
Convergence wrt grid‐size can be proved
(using rudimentary FE tools!)
This linear system must be implemented!
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The Kelvin–Mandel representation
2nd order, symmetric, tensors

[𝘀] = ൣ𝑠11, 𝑠22, 𝑠33, √2𝑠23, √2𝑠31, √2𝑠12൧
𝖳

4th order tensors with minor symmetries

[𝗧] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑇1111 𝑇1122 𝑇1133 √2𝑇1123 √2𝑇1131 √2𝑇1112
𝑇2211 𝑇2222 𝑇2233 √2𝑇2223 √2𝑇2231 √2𝑇2212
𝑇3311 𝑇3322 𝑇3333 √2𝑇3323 √2𝑇3331 √2𝑇3312
√2𝑇2311 √2𝑇2322 √2𝑇2333 2𝑇2323 2𝑇2331 2𝑇2312
√2𝑇3111 √2𝑇3122 √2𝑇3133 2𝑇3123 2𝑇3131 2𝑇3112
√2𝑇1211 √2𝑇1222 √2𝑇1233 2𝑇1223 2𝑇1231 2𝑇1212

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Some properties
𝘀1 ∶ 𝘀2 = [𝘀1]𝖳 ⋅ [𝘀2] [𝗧 ∶ 𝘀] = [𝗧] ⋅ [𝘀] [𝗧−1] = [𝗧]−1
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The structure of the linear system

൫𝗖𝑁 − 𝗖0൯
−1 ∶ 𝞃𝑁 + 𝝘𝑁0 (𝞃𝑁) = 𝝴𝑁 ⟺ 𝐴 ⋅ 𝑥 = 𝑏

𝑠 = 𝑑൫𝑑 + 1൯/2
𝑥 and 𝑏 are defined by 𝑠 × 1 blocks

𝑥𝑝 = [𝞃𝑝] and 𝑏𝑝 = [𝝴𝑁𝑝 ]

𝐴 is defined by 𝑠 × 𝑠 blocks

𝐴𝑝𝑞 = 𝛿𝑝𝑞[𝗖𝑁 − 𝗖0]−1ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
block‐diagonal

+ [𝝘𝑁0,𝑝−𝑞]ᇣᇧᇤᇧᇥ
block‐circulant

Storage would in principle be possible!
(but we don’t do that)
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On iterative (matrix‐free) linear solvers

𝐴 ⋅ 𝑥 = 𝑏

import scipy.sparse.linalg

class MyOperator(scipy.sparse.linalg.LinearOperator):
def __init__(self, ...):

pass

def _matvec(self, x):
# Compute y = A.x
return y

A = MyOperator()
b = ...
x, info = scipy.sparse.linalg.cg(A, b)
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Pseudo‐implementation (1/2)

class LippmannSchwingerOperator(LinearOperator):
def __init__(self, C, Gamma0):

self.C = np.copy(C)
self.Gamma0 = Gamma0
dim = Gamma0.dim
sym = (dim * (dim + 1)) // 2
self.tau_shape = Gamma0.grid_shape + (sym,)

# ... To be continued...
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Pseudo‐implementation (2/2)
class LippmannSchwingerOperator(LinearOperator):

# ... Continued...

def polarization_to_strain(self, tau):
eta = np.empty_like(tau)
C0 = self.Gamma0.C0
for p in self.Gamma0.cell_indices():

eta[p] = np.linalg.solve(self.C[p]-C0, tau[p])
return eta

def _matvec(self, x):
tau = x.reshape(self.tau_shape)
eta1 = self.polarization_to_strain(tau)
eta2 = self.Gamma0.apply(tau)
return eta1 + eta2
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Outline of Lecture 2

Weak form of the LS equation

Galerkin discretization of the LS equation

The discretized operators

Applying the discrete Green operator

Towards linear LS solvers

The last piece of the jigsaw
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Fourier coefficients of
cell‐wise constant functions

Cell‐wise constant functions
𝐱 ∈ Ω𝑝 ∶ 𝑓(𝐱) = 𝑓𝑝

Fourier coefficients

�̃�𝑛 =
𝑊𝑁
𝑛 𝑈𝑁,∗𝑛/2
𝒩

̂𝑓𝑛

𝑊𝑁
𝑛 = sinc

𝜋𝑛1
𝑁1

⋯ sinc
𝜋𝑛𝑑
𝑁𝑑

�̃�𝑛: Fourier coefficients of the periodic function 𝑓 (infinite series)

̂𝑓𝑛: discrete Fourier transform of the cell values 𝑓𝑝 (finite series)
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Cell‐averages in Fourier space
Let 𝑓 be any Ω‐periodic function.

〈𝑓〉𝑝 = 
𝑛∈𝒫

ቈ 
𝑚∈ℤ𝑑

(−1)𝑚𝑊𝑁
𝑛+𝑚𝑁�̃�𝑛+𝑚𝑁𝑈𝑁𝑛(𝑝+1/2)

Let 𝑔 be a cell‐wise constant function. From Plancherel’s theorem

〈𝑓 𝑔∗〉 = 
𝑛∈ℤ𝑑

�̃�𝑛 �̃�∗𝑛 =
1
𝒩 

𝑛∈ℤ𝑑
𝑊𝑁𝑛 𝑈𝑁𝑛/2�̃�𝑛 �̂�∗𝑛 =

1
𝒩 

𝑛∈𝒫

𝑚∈ℤ𝑑

𝑊𝑁
𝑛+𝑚𝑁 𝑈𝑁(𝑛+𝑚𝑁)/2ᇣᇧᇧᇤᇧᇧᇥ

=(−1)𝑚𝑈𝑁
𝑛/2

�̃�𝑛+𝑚𝑁 �̂�∗𝑛+𝑚𝑁ᇣᇧᇤᇧᇥ
=�̂�∗𝑛

Therefore
1

ℎ1 …ℎ𝑑
න
Ω
𝑓 𝑔∗ = 

𝑛∈𝒫
ቆ 
𝑚∈ℤ𝑑

(−1)𝑚𝑊𝑛+𝑚𝑁�̃�𝑛+𝑚𝑁ቇ�̂�∗𝑛𝑈𝑁𝑛/2

Let 𝑔 be the indicator function of Ω𝑝 (𝑝 ∈ 𝒫): 𝑔𝑞 = 𝛿𝑝𝑞. Then

�̂�𝑛 = 
𝑞∈𝒫

𝛿𝑝𝑞𝑈𝑁∗𝑛𝑞 = 𝑈𝑁∗𝑛𝑝
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Expression of the discrete Green op. (1/2)

Remember expression of continuous Green operator

𝝘0(𝞃)(𝐱) = 
𝑛∈ℤ𝑑

Γ̃0(𝐤𝑛) ∶ �̃�𝑛𝑒𝑖𝐤𝑛⋅𝐱

Remember definition of discrete Green operator
𝞃𝑁 ∈ 𝒯𝑁(Ω) ↦ 𝝶𝑁 = 𝝘𝑁0 (𝞃𝑁) ∈ 𝒯𝑁(Ω) such that 𝝶𝑁𝑝 = 〈𝝘0(𝞃𝑁)〉𝑝

Average strain induced by cell‐wise constant eigenstress

�̃�𝑛 = �̃�0(𝐤𝑛) ∶ �̃�𝑁𝑛 =
𝑊𝑁
𝑛 𝑈𝑁,∗𝑛/2
𝒩 �̃�0(𝐤𝑛) ∶ �̂�𝑁𝑛 with 𝝶 = 𝝘0(𝞃𝑁)

〈𝝶〉𝑝 =
1
𝒩 

𝑛∈𝒫
ቈ 
𝑚∈ℤ𝑑

൫𝑊𝑁
𝑛+𝑚𝑁൯

2�̃�0(𝐤𝑛+𝑚𝑁) ∶ �̂�𝑁𝑛+𝑚𝑁ᇣᇧᇤᇧᇥ
=�̂�𝑁𝑛

𝑈𝑁𝑛𝑝
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Expression of the discrete Green op. (2/2)
What we have shown so far

〈𝝘0(𝞃𝑁)〉𝑝 =
1
𝒩 

𝑛∈𝒫
ቈ 
𝑚∈ℤ𝑑

൫𝑊𝑁
𝑛+𝑚𝑁൯

2�̂�∞0 (𝐤𝑛+𝑚𝑁) ∶ �̂�𝑁𝑛 𝑈𝑁𝑛𝑝

Introduce the following quantity

�̂�𝑁0,𝑛 = 
𝑚∈ℤ𝑑

൫𝑊𝑁
𝑛+𝑚𝑁൯

2�̂�∞0 (𝐤𝑛+𝑚𝑁)

Then
〈𝝘0(𝞃)〉𝑝 =

1
𝒩 

𝑛∈𝒫
�̂�𝑁0,𝑛 ∶ �̂�𝑁𝑛 𝑈𝑁𝑛𝑝

Recognize an inverse DFT
𝝘𝑁0 (𝞃𝑁) = DFT−1൫�̂�𝑁0 ∶ �̂�𝑁൯
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Conclusion
Summary of Lecture 2

Galerkin discretization of the LS equation

The consistent discretized operators

Using the FFT to apply the discrete Green operator

Using matrix‐free solvers

�̂�𝑁0,𝑛 = 
𝑚∈ℤ𝑑

൫𝑊𝑁
𝑛+𝑚𝑁൯

2�̂�∞0 (𝐤𝑛+𝑚𝑁)

Conclusion
I must confess something…

In lecture 3: asymptotically consistent discretizations
(aka “variational crimes”)

S. Brisard — Consistent discretization of the LS equation — Introduction to FFT‐based numerical methods for homogenization 35



Thank you for your attention!

sebastien.brisard@univ-eiffel.fr
https://navier-lab.fr/en/equipe/brisard-sebastien

https://cv.archives-ouvertes.fr/sbrisard
https://sbrisard.github.io
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