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Linear elasticity
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given:

cell Q

stiffness C(x)

strain ε̄

sought:

u : Q→ Rd (periodic)

ε = ε̄ + ∇su (compatibility)

σ = C : ε (material law)

div σ = 0 (equilibrium)

output:

σ̄ = 〈σ〉Q

⇒ σ̄ = Ceff : ε̄
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Linear elasticity - beyond?
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Inelasticity?
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ε σ

input:

initial state

strain history ε : [tstart, tend]→ Sym (d)

output:

stress history σ : [tstart, tend]→ Sym (d)



Inelasticity?
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elasticity:
σ = f (ε)
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inelasticity:
σ = f (ε, z)

0 = g(ε, z, ż)
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inelasticity:
σ = f (ε, z)

0 = g(ε, z, ż)



Example - vM plasticity
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σ = f (ε, z)

0 = g(ε, z, ż)

z = (εp, p)

Hooke’s law

σ = C : (ε − εp)

evolution

ε̇p = ṗ
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Example - vM plasticity

8 14-18 March, 2022 Matti Schneider: Treating inelastic problems with the basic scheme Institute for Engineering Mechanics, KIT

σ = f (ε, z)

0 = g(ε, z, ż)

z = (εp, p)

Hooke’s law
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evolution
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Linear elasticity - beyond?
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given:

cell Q

stiffness C(x)

strain ε̄

sought:

u : Q→ Rd (periodic)

ε = ε̄ + ∇su (compatibility)

σ = C : ε (material law)

div σ = 0 (equilibrium)

output:

σ̄ = 〈σ〉Q

⇒ σ̄ = Ceff : ε̄



Upscaling inelasticity
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given:

cell Q

functions f (x, ε, z) and g(x, ε, z, ż)

strain history ε̄(t)

initial condition z0(x)

sought:

u : Q×[tstart, tend]→ Rd (periodic) and z : Q × [tstart, tend]→ RK

ε = ε̄ + ∇su (compatibility)

σ = f (x, ε, z) (material law)

0 = g(ε, z, ż), z(x, tstart) = z0(x) (internal evolution)

div σ = 0 (equilibrium)

output:

σ̄(t) = 〈σ(t, ·)〉Q
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initial condition z0(x)

sought:

u : Q × [tstart, tend]→ Rd (periodic) and z : Q × [tstart, tend]→ RK
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Upscaling inelasticity
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given:

cell Q

functions f (x, ε, z) and g(x, ε, z, ż)

strain history ε̄(t)

initial condition z0(x)

time discretization tstart = t0 < t1 < . . . < tN = tend, e.g.,

ż(tn+1) ≈ (zn+1 − zn)/(tn+1 − tn)

sought (n→ n + 1):

un+1 : Q→ Rd (periodic) and zn+1 : Q→ RK

0 = div f (x, ε̄n+1 + ∇sun+1, zn+1)

0 = g(εn+1, zn+1, (zn+1 − zn)/(tn+1 − tn))

output:

σ̄n+1 = 〈σn+1〉Q



Fix time step, drop n + 1
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sought:

u : Q→ Rd (periodic) and z : Q→ RK

0 = div f (x, ε̄ + ∇su, z)

0 = g(ε, z, (z − zn)/(tn+1 − tn))

PDE in u (d unknowns)ր non-local, sparse (after discretization)

algebraic equation in z (K unknowns)ր local
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Option I: solve full system
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sought:

u : Q→ Rd (periodic) and z : Q→ RK

0 = div f (x, ε̄ + ∇su, z)

0 = g(ε, z, (z − zn)/(tn+1 − tn))

d + K unknowns (at x)

non-local, sparse (after discretization)



Option II: eliminate z
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sought:

u : Q→ Rd (periodic) and z : Q→ RK

0 = div f (x, ε̄ + ∇su, z)

0 = g(ε, z, (z − zn)/(tn+1 − tn))

idea: write z as implicit function of ε

z solves g(ε, z, (z − zn)/(tn+1 − tn)) = 0 ⇐⇒ z = hn(ε)



Option II: eliminate z
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sought:

u : Q→ Rd (periodic) and z : Q→ RK

0 = div f (x, ε̄ + ∇su, hn(ε̄ + ∇su))

z = hn(ε̄ + ∇su)

d unknowns (at x)

non-local, sparse (after discretization)

“static condensation”
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Option II: eliminate z
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sought:

u : Q→ Rd (periodic) and z : Q→ RK

0 = div f (x, ε̄ + ∇su, hn(ε̄ + ∇su))

z = hn(ε̄ + ∇su)

leads to a pseudo-elastic problem for u

z obtained in post-processing

basis of user material routines
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Digression Part I

20 14-18 March, 2022 Matti Schneider: Treating inelastic problems with the basic scheme Institute for Engineering Mechanics, KIT

inelasticityր time steps

move from one time step to the next

eliminate the internal variables, update later

we are left with solving

div S(x, ε̄ + ∇su) = 0

with an elastic “stress function" S

S(x, ε) ≡ f (x, ε, hn(ε))



Overview
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1. From inelasticity to elasticity

2. The nonlinear basic scheme

3. Gradient descent



Linear elasticity
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given:

cell Q

stiffness C(x)

strain ε̄

sought:

u : Q→ Rd (periodic)

ε = ε̄ + ∇su (compatibility)

σ = C : ε (material law)

div σ = 0 (equilibrium)

output:

σ̄ = 〈σ〉Q

⇒ σ̄ = Ceff : ε̄



Non-Linear elasticity
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given:

cell Q

stress function S

strain ε̄

sought:

u : Q→ Rd (periodic)

ε = ε̄ + ∇su (compatibility)

σ = S(x, ε) (material law)

div σ = 0 (equilibrium)

output:

σ̄ = 〈σ〉Q



Lippmann-Schwinger reformulation
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seek u : Q→ Rd:

0 = −div S(·, ε̄ + ∇su)



Lippmann-Schwinger reformulation
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seek u : Q→ Rd:

div C
0 : (ε̄ + ∇su) = −div

[

S(·, ε̄ + ∇su) − C0 : (ε̄ + ∇su)
]

reference material C0
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seek u : Q→ Rd:

div C
0 : ∇su = −div

[

S(·, ε) − C0 : ε
]

reference material C0

total strain ε = ε̄ + ∇su



Lippmann-Schwinger reformulation
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seek u : Q→ Rd:

u = −G0div
[

S(·, ε) − C0 : ε
]

reference material C0

total strain ε = ε̄ + ∇su

G0 = (div C0 : ∇s)−1



Lippmann-Schwinger reformulation
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seek u : Q→ Rd:

∇su = −∇sG0div
[

S(·, ε) − C0 : ε
]

reference material C0

total strain ε = ε̄ + ∇su

G0 = (div C0 : ∇s)−1



Lippmann-Schwinger reformulation

23 14-18 March, 2022 Matti Schneider: Treating inelastic problems with the basic scheme Institute for Engineering Mechanics, KIT

seek u : Q→ Rd:

ε̄ + ∇su = ε̄ − ∇sG0div
[

S(·, ε) − C0 : ε
]

reference material C0

total strain ε = ε̄ + ∇su

G0 = (div C0 : ∇s)−1



Lippmann-Schwinger reformulation
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seek u : Q→ Rd:

ε̄ + ∇su = ε̄ − Γ0 :
[

S(·, ε) − C0 : ε
]

reference material C0

total strain ε = ε̄ + ∇su

Γ
0 = ∇s(div C0 : ∇s)−1div



Lippmann-Schwinger reformulation
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seek ε : Q→ Sym (d):

ε = ε̄ − Γ0 :
[

S(·, ε) − C0 : ε
]

reference material C0

total strain ε = ε̄ + ∇su

Γ
0 = ∇s(div C0 : ∇s)−1div



Nonlinear Lippmann-Schwinger equation
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seek ε : Q→ Sym (d):

ε = ε̄ − Γ0 :
[

S(·, ε) − C0 : ε
]



Nonlinear basic scheme
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seek εk+1 : Q→ Sym (d):

εk+1 = ε̄ − Γ0 :
[

S(·, εk) − C0 : εk
]



Nonlinear basic scheme
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seek εk+1 : Q→ Sym (d):

εk+1 = ε̄ − Γ0 :
[

S(·, εk) − C0 : εk
]

conceived by Moulinec & Suquet

[H. Moulinec and P. Suquet, Comptes Rendus de l’Académie des Sciences, 1994]

[H. Moulinec and P. Suquet, CMAME, 1998]

works with any discretization



Nonlinear basic scheme
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seek εk+1 : Q→ Sym (d):

εk+1 = ε̄ − Γ0 :
[

S(·, εk) − C0 : εk
]

Questions:

When does it converge?

How to choose C0?
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seek εk+1 : Q→ Sym (d):

εk+1 = ε̄ − Γ0 :
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]
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When does it converge?
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1. From inelasticity to elasticity

2. The nonlinear basic scheme

3. Gradient descent



Gradient descent
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Goal:

f (x) −→ min
x∈X

Critical point eq.:

∇f (x)
!
= 0

Gradient descent:

xk+1 = xk − sk ∇f (xk)

sk . . . step size

x

y

x0
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Goal:

f (x) −→ min
x∈X

Critical point eq.:

∇f (x)
!
= 0

Gradient descent:

xk+1 = xk − sk ∇f (xk)

sk . . . step size

x

y

x0

x1x2x3x4



Projected gradient descent
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Goal:

f (x) −→ min
x∈A⊆X

Critical point eq.:

x
!
= PA(x − s∇f (x))

Gradient descent:

xk+1 = PA(xk − sk ∇f (xk))

sk . . . step size

z = PA(y) realizes minz∈A ‖y−z‖

A

x

y

x0
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sk . . . step size

z = PA(y) realizes minz∈A ‖y−z‖

A

x

y

x0

x1
x2
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Goal:

f (x) −→ min
x∈A⊆X

Critical point eq.:

x
!
= PA(x − s∇f (x))

Gradient descent:

xk+1 = PA(xk − sk ∇f (xk))

sk . . . step size

z = PA(y) realizes minz∈A ‖y−z‖

A

x

y

x0

x1
x2

x3



Application to hyperelasticity
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X contains ε : Q→ Sym (d) with inner product

(ε1, ε2)L2 = 〈ε1 : ε2〉Q

f (ε) = 〈w(·, ε)〉Q for elastic energy, S = ∂w/∂ε

constraint set

A =
{

ε
∣

∣

∣ ε = ε̄ + ∇su for some periodic u : Q→ R
d
}

any critical point of f (ε) −→ minε∈A satisfies

div S(·, ε) = 0

for some u with ε = ε̄ + ∇su



Projected gradient descent?

29 14-18 March, 2022 Matti Schneider: Treating inelastic problems with the basic scheme Institute for Engineering Mechanics, KIT

xk+1 = PA(xk − sk ∇f (xk))

∇f (x) =?

PA =?



Gradient?
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implicit characterization:

(∇f (x), v)X =
d

ds
f (x + sv)

∣

∣

∣

∣

∣

s=0

for all v

our case:

f (ε) = 〈w(·, ε)〉Q
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implicit characterization:

(∇f (x), v)X =
d

ds
f (x + sv)

∣

∣

∣

∣

∣

s=0

for all v

our case:

f (ε) =
1

|Q|

∫

Q

w(x, ε) dx
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implicit characterization:

(∇f (x), v)X =
d

ds
f (x + sv)

∣

∣

∣

∣

∣

s=0

for all v

our case:

f (ε + s ξ) =
1

|Q|

∫

Q

w(x, ε + s ξ) dx
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d

ds
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∣

∣

∣

∣
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=
d

ds

1

|Q|

∫

Q
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∣

∣
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∣
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∣

∣
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(x, ε) : ξ dx
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implicit characterization:

(∇f (x), v)X =
d

ds
f (x + sv)

∣

∣

∣

∣

∣

s=0

for all v

our case:

(∇f (ε), ξ)L2 =
1

|Q|

∫

Q

∂w

∂ε
(x, ε) : ξ dx
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implicit characterization:

(∇f (x), v)X =
d

ds
f (x + sv)

∣

∣

∣

∣

∣

s=0

for all v

our case:

1

|Q|

∫

Q

∇f (ε) : ξ dx =
1

|Q|

∫

Q

∂w

∂ε
(x, ε) : ξ dx
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implicit characterization:

(∇f (x), v)X =
d

ds
f (x + sv)

∣

∣

∣

∣

∣

s=0

for all v

our case:

∇f (ε) =
∂w

∂ε
(·, ε)



Projector?
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ξ = PA(ε) minimizes ‖ε − ξ‖2
L2 among ξ ∈ A
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among ε̄ + ∇su ∈ A
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among u : Q→ R

d,

i.e.,

d

ds
‖ε − ε̄ − ∇s(u + sv)‖2

L2

∣

∣

∣

∣

∣

s=0

!
= 0 for all v : Q→ R

d
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among u : Q→ R

d,

i.e.,

(ε − ε̄ − ∇su,−2∇sv)L2

!
= 0 for all v : Q→ R

d
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among u : Q→ R
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!
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among u : Q→ R

d,

i.e.,

〈(ε − ε̄ − ∇su) : ∇sv〉Q
!
= 0 for all v : Q→ R

d
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among u : Q→ R

d,

i.e.,

− 〈div (ε − ε̄ − ∇su) · v〉Q
!
= 0 for all v : Q→ R

d
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among u : Q→ R

d,

i.e.,

−div (ε − ε̄ − ∇su)
!
= 0
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among u : Q→ R

d,

i.e.,

div ∇su
!
= div (ε − ε̄)
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among u : Q→ R

d,

i.e.,

div ∇su
!
= div ε
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇su = PA(ε) minimizes ‖ε − ε̄ − ∇su‖2
L2 among u : Q→ R

d,

i.e.,

u = (div ∇s)−1 div ε



Projector?
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

ε̄ + ∇s (div ∇s)−1 div ε = PA(ε)



Projector?
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implicit characterization:

z = PA(x) minimizes ‖x − z‖2X among z ∈ A

our case:

PA(ε) = ε̄ + Γ : ε with Γ ≡ ∇s (div ∇s)−1 div .



Projected gradient descent?
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εk+1 = PA(εk − sk ∇f (εk))

∇f (ε) = ?

PA(ε) = ?



Projected gradient descent?
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εk+1 = PA(εk − sk ∇f (εk))

∇f (ε) = ∂w
∂ε

(·, ε)

PA(ε) = ε̄ + Γ : ε with Γ ≡ ∇s (div ∇s)−1 div



Projected gradient descent?
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εk+1 = PA

(

εk − sk ∂w

∂ε
(·, εk)

)

∇f (ε) = ∂w
∂ε

(·, ε)

PA(ε) = ε̄ + Γ : ε with Γ ≡ ∇s (div ∇s)−1 div



Projected gradient descent?
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εk+1 = ε̄ + Γ :

(

εk − sk ∂w

∂ε
(·, εk)

)

∇f (ε) = ∂w
∂ε

(·, ε)

PA(ε) = ε̄ + Γ : ε with Γ ≡ ∇s (div ∇s)−1 div



Projected gradient descent?
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εk+1 = ε̄ + Γ :

(

εk − sk ∂w

∂ε
(·, εk)

)

with Γ ≡ ∇s (div ∇s)−1 div



Projected gradient descent?
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εk+1 = ε̄ + sk
Γ :

(

1

sk
εk −

∂w

∂ε
(·, εk)

)

with Γ ≡ ∇s (div ∇s)−1 div



Projected gradient descent?
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εk+1 = ε̄ − sk
Γ :

(

∂w

∂ε
(·, εk) −

1

sk
εk

)

with Γ ≡ ∇s (div ∇s)−1 div
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εk+1 = ε̄ − sk
Γ :

(

∂w

∂ε
(·, εk) −

1

sk
εk

)

with Γ ≡ ∇s (div ∇s)−1 div

suppose sk ≡ s0

define C0 ≡ 1
s0 Id

associated Γ0 ≡ s0
Γ

write S = ∂w/∂ε
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εk+1 = ε̄ − sk
Γ :

(

∂w

∂ε
(·, εk) −

1

sk
εk

)

with Γ ≡ ∇s (div ∇s)−1 div

suppose sk ≡ s0

define C0 ≡ 1
s0 Id

associated Γ0 ≡ s0
Γ

write S = ∂w/∂ε
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εk+1 = ε̄ − sk
Γ :

(

∂w

∂ε
(·, εk) − C0 : εk

)

with Γ ≡ ∇s (div ∇s)−1 div

suppose sk ≡ s0

define C0 ≡ 1
s0 Id

associated Γ0 ≡ s0
Γ

write S = ∂w/∂ε



Projected gradient descent?
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εk+1 = ε̄ − Γ0 :

(

∂w

∂ε
(·, εk) − C0 : εk

)

with Γ ≡ ∇s (div ∇s)−1 div

suppose sk ≡ s0

define C0 ≡ 1
s0 Id

associated Γ0 ≡ s0
Γ

write S = ∂w/∂ε



Projected gradient descent?
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εk+1 = ε̄ − Γ0 :
(

S(·, εk) − C0 : εk
)

with Γ ≡ ∇s (div ∇s)−1 div

suppose sk ≡ s0

define C0 ≡ 1
s0 Id

associated Γ0 ≡ s0
Γ

write S = ∂w/∂ε



Projected gradient descent!
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εk+1 = ε̄ − Γ0 :
(

S(·, εk) − C0 : εk
)

hyperelastic basic scheme ≡ projected gradient descent

[M. Kabel, T. Böhlke, MS, Comput Mech, 2014]



So what?
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εk+1 = ε̄ − Γ0 :
(

S(·, εk) − C0 : εk
)

reference material ≡ inverse step size

C
0 ≡

1

s0
Id

s0 large⇒ instability

s0 small⇒ f (εk+1) < f (εk) (unless critical)
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εk+1 = ε̄ − Γ0 :
(

S(·, εk) − C0 : εk
)

reference material ≡ inverse step size

C
0 ≡

1

s0
Id

s0 large⇒ instability

s0 small⇒ f (εk+1) < f (εk) (unless critical)



So what?
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εk+1 = ε̄ − Γ0 :
(

S(·, εk) − C0 : εk
)

import knowledge from optimization, e.g., on convergence

ր [MS, CMAME, 2017]



So what?
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εk+1 = ε̄ − Γ0 :
(

S(·, εk) − C0 : εk
)

α+-Lipschitz condition

‖S(x, ξ1)−S(x, ξ2)‖ ≤ α+ ‖ξ1−ξ2‖ for all x ∈ Q and ξ1, ξ2 ∈ Sym (d)

monotone S (convex w)

(S(x, ξ1) − S(x, ξ2)) : (ξ1 − ξ2) ≥ 0 for all x ∈ Q and ξ1, ξ2 ∈ Sym (d)

choose C0 = α+ Id and obtain logarithmic convergence

f (εk) −min f (ε∗) ≤
2α+ ‖ε

0 − ε∗‖2

k + 4
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εk+1 = ε̄ − Γ0 :
(

S(·, εk) − C0 : εk
)

α+-Lipschitz condition

‖S(x, ξ1)−S(x, ξ2)‖ ≤ α+ ‖ξ1−ξ2‖ for all x ∈ Q and ξ1, ξ2 ∈ Sym (d)

strongly α−-monotone S (strongly α−-convex w)

(S(x, ξ1) − S(x, ξ2)) : (ξ1 − ξ2) ≥ α− ‖ξ1 − ξ2‖
2 for all x ∈ Q, ξ1, ξ2 ∈ Sym (d)

choose C0 = (α+ + α−)/2 Id and obtain linear convergence

‖εk+1 − ε∗‖L2 ≤

(

α+ − α−

α+ + α−

)

‖εk − ε∗‖L2
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So what?
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εk+1 = ε̄ − Γ0 :
(

S(·, εk) − C0 : εk
)

α+-Lipschitz condition

‖S(x, ξ1)−S(x, ξ2)‖ ≤ α+ ‖ξ1−ξ2‖ for all x ∈ Q and ξ1, ξ2 ∈ Sym (d)

strongly α−-monotone S (strongly α−-convex w)

(S(x, ξ1) − S(x, ξ2)) : (ξ1 − ξ2) ≥ α− ‖ξ1 − ξ2‖
2 for all x ∈ Q, ξ1, ξ2 ∈ Sym (d)

choose C0 = (α+ + α−)/2 Id and obtain linear convergence

‖εk+1 − ε∗‖L2 ≤

(

α+ − α−

α+ + α−

)k+1

‖ε0 − ε∗‖L2
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if S ∈ C1 in ε

α+-Lipschitz ⇐⇒ λ ≤ α+ ∀x, ξ ∀λ ∈ Eig

(

∂S

∂ε
(x, ξ)

)

α−-strongly convex ⇐⇒ λ ≥ α− ∀x, ξ ∀λ ∈ Eig

(

∂S

∂ε
(x, ξ)

)

ε

σ α+

α−

maximum/minimum slopes of algo

tangent

estimated on-line

theory does not cover

porosity/softening
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porosity/softening



Digression Part III
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basic scheme ≡ projected gradient descent

provides intuition

import insights from optimization, e.g., Nesterov’s book

projected gradient descent ++ ≡ basic scheme ++ (tomorrow)



The end
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