

Matti Schneider

Treating inelastic problems with the basic scheme

Introduction to FFT-based numerical methods for the homogenization of random materials

In memoriam

Prof. Dr. Wolfgang Seemann 31.3.1961 - 8.2.2022

Overview I

1. From inelasticity to elasticity

2. The nonlinear basic scheme

3. Gradient descent

Overview

1. From inelasticity to elasticity

2. The nonlinear basic scheme

3. Gradient descent

Linear elasticity

given:

- cell Q
- stiffness $\mathbb{C}(x)$
- strain $\bar{\varepsilon}$

sought:

• $u: Q \to \mathbb{R}^d$ (periodic)

ε	$\bar{\varepsilon} + \nabla^s u$	(compatibility)
σ	\mathbb{C} : ε	(material law)
σ		

output:

 $\bar{\sigma} = \langle \sigma \rangle_{Q}$ $\Rightarrow \bar{\sigma} = \mathbb{C}^{\text{eff}} : \bar{\varepsilon}$

Linear elasticity

given:

- cell Q
- stiffness $\mathbb{C}(x)$
- strain $\bar{\varepsilon}$

sought:

• $u: Q \to \mathbb{R}^d$ (periodic)

${\mathcal E}$	=	$\bar{\varepsilon} + \nabla^s u$	(compatibility)
σ	=	\mathbb{C} : $arepsilon$	(material law)
div σ	=	0	(equilibrium)

output:

 $\bar{\sigma} = \langle \sigma \rangle_Q$ $\Rightarrow \bar{\sigma} = \mathbb{C}^{\text{eff}} : \bar{\varepsilon}$

Linear elasticity

given:

- cell Q
- stiffness $\mathbb{C}(x)$
- strain $\bar{\varepsilon}$

sought:

• $u: Q \to \mathbb{R}^d$ (periodic)

${\mathcal E}$	=	$\bar{\varepsilon} + \nabla^s u$	(compatibility)
σ	=	\mathbb{C} : $arepsilon$	(material law)
div σ	=	0	(equilibrium)

output:

Linear elasticity - beyond?

given:

- cell Q
- stiffness $\mathbb{C}(x)$
- strain $\bar{\varepsilon}$

sought:

• $u: Q \to \mathbb{R}^d$ (periodic)

${\mathcal E}$	=	$\bar{\varepsilon} + \nabla^s u$	(compatibility)
σ	=	\mathbb{C} : $arepsilon$	(material law)
div σ	=	0	(equilibrium)

output:

• $\bar{\sigma} = \langle \sigma \rangle_Q$ • $\Rightarrow \bar{\sigma} = \mathbb{C}^{\text{eff}} : \bar{\varepsilon}$

input:

- initial state
- strain history $\varepsilon : [t_{\text{start}}, t_{\text{end}}] \to \text{Sym}(d)$

output:

• stress history $\sigma : [t_{\text{start}}, t_{\text{end}}] \to \text{Sym}(d)$

Example - vM plasticity

$$\begin{aligned} \sigma &= f(\varepsilon, z) \\ 0 &= g(\varepsilon, z, \dot{z}) \end{aligned}$$

$$z = (\varepsilon^p, p)$$

$$\sigma = \mathbb{C} : (\varepsilon - \varepsilon^p)$$

evolution

$$\begin{split} \dot{\varepsilon}^{p} &= \dot{p} \ \sqrt{\frac{3}{2}} \frac{\operatorname{dev} \sigma}{||\operatorname{dev} \sigma||}, \\ & \sqrt{\frac{3}{2}} \left||\operatorname{dev} \sigma|| \le \sigma_{Y}(p), \quad \dot{p} \ge 0, \quad \left(\sqrt{\frac{3}{2}} \left||\operatorname{dev} \sigma|| - \sigma_{Y}(p)\right)\dot{p} = 0 \end{split}$$

Example - vM plasticity

$$\begin{aligned} \sigma &= f(\varepsilon, z) \\ 0 &= g(\varepsilon, z, \dot{z}) \end{aligned}$$

$$z = (\varepsilon^p, p)$$

$$\sigma = \mathbb{C} : (\varepsilon - \varepsilon^p)$$

evolution

8

$$\begin{split} \dot{\varepsilon}^{p} &= \dot{p} \ \sqrt{\frac{3}{2}} \frac{\operatorname{dev} \sigma}{||\operatorname{dev} \sigma||}, \\ \dot{p} &= \max\left(0, \dot{p} + \rho \left(\sqrt{\frac{3}{2}} ||\operatorname{dev} \sigma|| - \sigma_{Y}(p)\right)\right), \quad \rho > 0 \end{split}$$

Linear elasticity - beyond?

given:

- cell Q
- stiffness $\mathbb{C}(x)$
- strain $\bar{\varepsilon}$

sought:

• $u: Q \to \mathbb{R}^d$ (periodic)

${\mathcal E}$	=	$\bar{\varepsilon} + \nabla^s u$	(compatibility)
σ	=	\mathbb{C} : $arepsilon$	(material law)
div σ	=	0	(equilibrium)

output:

• $\bar{\sigma} = \langle \sigma \rangle_Q$ • $\Rightarrow \bar{\sigma} = \mathbb{C}^{\text{eff}} : \bar{\varepsilon}$

given:

cell Q

- functions $f(x, \varepsilon, z)$ and $g(x, \varepsilon, z, \dot{z})$
- strain history $\bar{\varepsilon}(t)$
- initial condition $z_0(x)$

sought:

• $u: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^d$ (periodic) and $z: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^K$

$$\varepsilon = \overline{\varepsilon} + \nabla^{s} u$$

$$\sigma = f(x, \varepsilon, z)$$

$$0 = g(\varepsilon, z, \dot{z}), \quad z(x, t_{start}) = z_{0}(x)$$

div $\sigma = 0$

(compatibility) (material law) (internal evolution) (equilibrium)

output

given:

cell Q

- functions $f(x, \varepsilon, z)$ and $g(x, \varepsilon, z, \dot{z})$
- strain history $\bar{\varepsilon}(t)$
- initial condition $z_0(x)$

sought:

• $u: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^d$ (periodic) and $z: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^K$

$$\varepsilon = \overline{\varepsilon} + \nabla^{s} u$$

$$\sigma = f(x, \varepsilon, z)$$

$$0 = g(\varepsilon, z, \dot{z}), \quad z(x, t_{start}) = z_{0}(x)$$

div $\sigma = 0$

(compatibility) (material law) (internal evolution) (equilibrium)

output

$$\bar{\sigma}(t) = \langle \sigma(t, \cdot) \rangle_Q$$

given:

cell Q

- functions $f(x, \varepsilon, z)$ and $g(x, \varepsilon, z, \dot{z})$
- strain history $\bar{\varepsilon}(t)$
- initial condition $z_0(x)$

sought:

• $u: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^d$ (periodic) and $z: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^K$

$$\varepsilon = \overline{\varepsilon} + \nabla^{s} u$$

$$\sigma = f(x, \varepsilon, z)$$

$$0 = g(\varepsilon, z, \dot{z}), \quad z(x, t_{start}) = z_{0}(x)$$

div $\sigma = 0$

(compatibility) (material law) (internal evolution) (equilibrium)

output:

•
$$\bar{\sigma}(t) = \langle \sigma(t, \cdot) \rangle_Q$$

given:

cell Q

- functions $f(x, \varepsilon, z)$ and $g(x, \varepsilon, z, \dot{z})$
- strain history $\bar{\varepsilon}(t)$
- initial condition $z_0(x)$

sought:

• $u: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^d$ (periodic) and $z: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^K$

ε	=	$\bar{\varepsilon} + \nabla^s u$		(compatibility)
σ	=	$f(x,\varepsilon,z)$		(material law)
0	=	$g(\varepsilon, z, \dot{z}),$	$z(x, t_{\texttt{start}}) = z_0(x)$	(internal evolution)
div σ	=	0		(equilibrium)

output:

•
$$\bar{\sigma}(t) = \langle \sigma(t, \cdot) \rangle_Q$$

given:

cell Q

- functions $f(x, \varepsilon, z)$ and $g(x, \varepsilon, z, \dot{z})$
- strain history $\bar{\varepsilon}(t)$
- initial condition $z_0(x)$

sought:

• $u: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^d$ (periodic) and $z: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^K$

$$\begin{aligned} \sigma &= f(x, \bar{\varepsilon} + \nabla^s u, z) \\ 0 &= g(\varepsilon, z, \dot{z}), \quad z(x, t_{\text{start}}) = z_0(x) \quad (\text{internal evolution}) \\ \text{div } \sigma &= 0 \quad (\text{equilibrium}) \end{aligned}$$

output:

 $\bar{\sigma}(t) = \langle \sigma(t, \cdot) \rangle_Q$

given:

cell Q

- functions $f(x, \varepsilon, z)$ and $g(x, \varepsilon, z, \dot{z})$
- strain history $\bar{\varepsilon}(t)$
- initial condition $z_0(x)$

sought:

• $u: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^d$ (periodic) and $z: Q \times [t_{\text{start}}, t_{\text{end}}] \to \mathbb{R}^K$

 $0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, z)$ $0 = g(\varepsilon, z, \dot{z}), \quad z(x, t_{\text{start}}) = z_0(x)$

output:

• $\bar{\sigma}(t) = \langle \sigma(t, \cdot) \rangle_Q$

given:

- cell Q
- functions $f(x, \varepsilon, z)$ and $g(x, \varepsilon, z, \dot{z})$
- strain history $\bar{\varepsilon}(t)$
- initial condition z₀(x)
- time discretization $t_{\text{start}} = t_0 < t_1 < \ldots < t_N = t_{\text{end}}$, e.g., $\dot{z}(t_{n+1}) \approx (z_{n+1} - z_n)/(t_{n+1} - t_n)$

sought $(n \rightarrow n + 1)$:

•
$$u_{n+1}: Q \to \mathbb{R}^d$$
 (periodic) and $z_{n+1}: Q \to \mathbb{R}^K$

output:

 $\bullet \ \bar{\sigma}_{n+1} = \langle \sigma_{n+1} \rangle_Q$

Fix time step, drop n + 1

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \bar{\varepsilon} + \nabla^s u, z)$$

$$0 = g(\varepsilon, z, (z - z_n)/(t_{n+1} - t_n))$$

PDE in *u* (*d* unknowns) *∧* non-local, sparse (after discretization)
 algebraic equation in *z* (*K* unknowns) *∧* local

Fix time step, drop n + 1

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, z)$$

$$0 = g(\varepsilon, z, (z - z_n)/(t_{n+1} - t_n))$$

• PDE in
$$u$$
 (d unknowns) \nearrow non-local, sparse (after discretization)

algebraic equation in z (K unknowns) \nearrow local

Fix time step, drop n + 1

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^{s} u, z)$$

$$0 = g(\varepsilon, z, (z - z_{n})/(t_{n+1} - t_{n}))$$

PDE in *u* (*d* unknowns) *∧* non-local, sparse (after discretization)
 algebraic equation in *z* (*K* unknowns) *∧* local

Option I: solve full system

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^k$

$$0 = \operatorname{div} f(x, \bar{\varepsilon} + \nabla^s u, z)$$

$$0 = g(\varepsilon, z, (z - z_n)/(t_{n+1} - t_n))$$

• d + K unknowns (at x)

non-local, sparse (after discretization)

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^k$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, z)$$

$$0 = g(\varepsilon, z, (z - z_n)/(t_{n+1} - t_n))$$

• idea: write z as implicit function of ε

z solves
$$g(\varepsilon, z, (z - z_n)/(t_{n+1} - t_n)) = 0 \iff z = h_n(\varepsilon)$$

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, h_n(\overline{\varepsilon} + \nabla^s u))$$

$$z = h_n(\overline{\varepsilon} + \nabla^s u)$$

d unknowns (at x)

non-local, sparse (after discretization)

"static condensation"

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, h_n(\overline{\varepsilon} + \nabla^s u))$$

$$z = h_n(\overline{\varepsilon} + \nabla^s u)$$

d unknowns (at x)

non-local, sparse (after discretization)

"static condensation"

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, h_n(\overline{\varepsilon} + \nabla^s u))$$

$$z = h_n(\overline{\varepsilon} + \nabla^s u)$$

- d unknowns (at x)
- non-local, sparse (after discretization)
- "static condensation"

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, h_n(\overline{\varepsilon} + \nabla^s u))$$

$$z = h_n(\overline{\varepsilon} + \nabla^s u)$$

- d unknowns (at x)
- non-local, sparse (after discretization)
- "static condensation"

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, h_n(\overline{\varepsilon} + \nabla^s u))$$

$$z = h_n(\overline{\varepsilon} + \nabla^s u)$$

leads to a pseudo-elastic problem for u

- z obtained in post-processing
- basis of user material routines

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, h_n(\overline{\varepsilon} + \nabla^s u))$$

$$z = h_n(\overline{\varepsilon} + \nabla^s u)$$

leads to a pseudo-elastic problem for u

- z obtained in post-processing
- basis of user material routines

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, h_n(\overline{\varepsilon} + \nabla^s u))$$

$$z = h_n(\overline{\varepsilon} + \nabla^s u)$$

- leads to a pseudo-elastic problem for u
- z obtained in post-processing
- basis of user material routines

sought:

•
$$u: Q \to \mathbb{R}^d$$
 (periodic) and $z: Q \to \mathbb{R}^K$

$$0 = \operatorname{div} f(x, \overline{\varepsilon} + \nabla^s u, h_n(\overline{\varepsilon} + \nabla^s u))$$

$$z = h_n(\overline{\varepsilon} + \nabla^s u)$$

- leads to a pseudo-elastic problem for u
- z obtained in post-processing
- basis of user material routines

Digression Part I

- inelasticity / time steps
- move from one time step to the next
- eliminate the internal variables, update later
- we are left with solving

div $S(x, \bar{\varepsilon} + \nabla^s u) = 0$

with an elastic "stress function" S

 $S(x,\varepsilon) \equiv f(x,\varepsilon,h_n(\varepsilon))$
Overview

1. From inelasticity to elasticity

2. The nonlinear basic scheme

3. Gradient descent

Linear elasticity

given:

- cell Q
- stiffness $\mathbb{C}(x)$
- strain $\bar{\varepsilon}$

sought:

• $u: Q \to \mathbb{R}^d$ (periodic)

${\mathcal E}$	=	$\overline{\varepsilon} + \nabla^s u$	(compatibility)
σ	=	\mathbb{C} : $arepsilon$	(material law)
div σ	=	0	(equilibrium)

output:

•
$$\bar{\sigma} = \langle \sigma \rangle_Q$$

• $\Rightarrow \bar{\sigma} = \mathbb{C}^{\text{eff}} : \bar{\varepsilon}$

Non-Linear elasticity

given:

- cell Q
- stress function S
- strain $\bar{\varepsilon}$

sought:

• $u: Q \to \mathbb{R}^d$ (periodic)

${\mathcal E}$	=	$\bar{\varepsilon} + \nabla^s u$	(compatibility)
σ	=	$S(x,\varepsilon)$	(material law)
div σ	=	0	(equilibrium)

output:

• $\bar{\sigma} = \langle \sigma \rangle_Q$

seek $u: Q \to \mathbb{R}^d$:

 $0 = -\text{div } \mathsf{S}(\cdot, \bar{\varepsilon} + \nabla^s u)$

seek $u : Q \to \mathbb{R}^d$: div $\mathbb{C}^0 : (\bar{\varepsilon} + \nabla^s u) = -\text{div} \left[S(\cdot, \bar{\varepsilon} + \nabla^s u) - \mathbb{C}^0 : (\bar{\varepsilon} + \nabla^s u) \right]$

• reference material \mathbb{C}^0

seek $u: Q \to \mathbb{R}^d$:

div \mathbb{C}^0 : $\nabla^s u = -\text{div} \left[S(\cdot, \bar{\varepsilon} + \nabla^s u) - \mathbb{C}^0 : (\bar{\varepsilon} + \nabla^s u) \right]$

• reference material \mathbb{C}^0

seek $u : Q \to \mathbb{R}^d$: div $\mathbb{C}^0 : \nabla^s u = -\text{div} \left[S(\cdot, \varepsilon) - \mathbb{C}^0 : \varepsilon \right]$

- reference material \mathbb{C}^0
- total strain $\varepsilon = \overline{\varepsilon} + \nabla^s u$

seek $u : Q \to \mathbb{R}^d$: $u = -G^0 \operatorname{div} \left[\mathsf{S}(\cdot, \varepsilon) - \mathbb{C}^0 : \varepsilon \right]$

- reference material \mathbb{C}^0
- total strain $\varepsilon = \overline{\varepsilon} + \nabla^s u$
- $G^0 = (\operatorname{div} \mathbb{C}^0 : \nabla^s)^{-1}$

seek $u: Q \to \mathbb{R}^d$:

$$\nabla^{s} u = -\nabla^{s} G^{0} \operatorname{div} \left[\mathsf{S}(\cdot, \varepsilon) - \mathbb{C}^{0} : \varepsilon \right]$$

- reference material \mathbb{C}^0
- total strain $\varepsilon = \overline{\varepsilon} + \nabla^s u$
- $G^0 = (\operatorname{div} \mathbb{C}^0 : \nabla^s)^{-1}$

seek $u: Q \to \mathbb{R}^d$:

$$\bar{\varepsilon} + \nabla^s u = \bar{\varepsilon} - \nabla^s G^0 \operatorname{div} \left[\mathsf{S}(\cdot, \varepsilon) - \mathbb{C}^0 : \varepsilon \right]$$

- reference material \mathbb{C}^0
- total strain $\varepsilon = \overline{\varepsilon} + \nabla^s u$
- $G^0 = (\operatorname{div} \mathbb{C}^0 : \nabla^s)^{-1}$

seek $u: Q \to \mathbb{R}^d$:

$$\bar{\varepsilon} + \nabla^s u = \bar{\varepsilon} - \Gamma^0 : \left[\mathsf{S}(\cdot, \varepsilon) - \mathbb{C}^0 : \varepsilon \right]$$

- reference material \mathbb{C}^0
- total strain $\varepsilon = \overline{\varepsilon} + \nabla^s u$
- $\Gamma^0 = \nabla^s (\operatorname{div} \mathbb{C}^0 : \nabla^s)^{-1} \operatorname{div}$

seek
$$\varepsilon : Q \to \text{Sym}(d)$$
:

$$\varepsilon = \overline{\varepsilon} - \Gamma^0 : \left[\mathsf{S}(\cdot, \varepsilon) - \mathbb{C}^0 : \varepsilon \right]$$

- reference material \mathbb{C}^0
- total strain $\varepsilon = \overline{\varepsilon} + \nabla^s u$
- $\Gamma^0 = \nabla^s (\operatorname{div} \mathbb{C}^0 : \nabla^s)^{-1} \operatorname{div}$

Nonlinear Lippmann-Schwinger equation

seek $\varepsilon : Q \to \text{Sym}(d)$:

$$\varepsilon = \overline{\varepsilon} - \Gamma^0 : \left[\mathsf{S}(\cdot, \varepsilon) - \mathbb{C}^0 : \varepsilon \right]$$

seek ε^{k+1} : $Q \to \text{Sym}(d)$:

$$\boldsymbol{\varepsilon}^{\boldsymbol{k}+1} = \bar{\boldsymbol{\varepsilon}} - \boldsymbol{\Gamma}^0 : \left[\mathsf{S}(\cdot, \boldsymbol{\varepsilon}^{\boldsymbol{k}}) - \mathbb{C}^0 : \boldsymbol{\varepsilon}^{\boldsymbol{k}} \right]$$

seek ε^{k+1} : $Q \rightarrow \text{Sym}(d)$:

$$\varepsilon^{k+1} = \overline{\varepsilon} - \Gamma^0 : \left[\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right]$$

conceived by Moulinec & Suquet

[H. Moulinec and P. Suquet, Comptes Rendus de l'Académie des Sciences, 1994]

[H. Moulinec and P. Suquet, CMAME, 1998]

works with any discretization

seek ε^{k+1} : $Q \rightarrow \text{Sym}(d)$:

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left[\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right]$$

Questions:

- When does it converge?
- How to choose \mathbb{C}^0 ?

seek ε^{k+1} : $Q \rightarrow \text{Sym}(d)$:

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left[\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right]$$

Questions:

- When does it converge?
- How to choose \mathbb{C}^0 ?

seek ε^{k+1} : $Q \rightarrow \text{Sym}(d)$:

$$\boldsymbol{\varepsilon}^{k+1} = \bar{\boldsymbol{\varepsilon}} - \boldsymbol{\Gamma}^0 : \left[\mathsf{S}(\cdot, \boldsymbol{\varepsilon}^k) - \mathbb{C}^0 : \boldsymbol{\varepsilon}^k \right]$$

Questions:

- When does it converge?
- How to choose \mathbb{C}^0 ?

Overview

1. From inelasticity to elasticity

2. The nonlinear basic scheme

3. Gradient descent

Goal:

 $f(x) \longrightarrow \min_{x \in X}$

Critical point eq.:

 $\nabla f(x) \stackrel{!}{=} 0$

Gradient descent:

$$x^{k+1} = x^k - s^k \,\nabla f(x^k)$$

Goal:

 $f(x) \longrightarrow \min_{x \in X}$

Critical point eq.:

 $\nabla f(x) \stackrel{!}{=} 0$

Gradient descent:

$$x^{k+1} = x^k - s^k \,\nabla f(x^k)$$

Goal:

 $f(x) \longrightarrow \min_{x \in X}$

Critical point eq.:

 $\nabla f(x) \stackrel{!}{=} 0$

Gradient descent:

$$x^{k+1} = x^k - s^k \,\nabla f(x^k)$$

Goal:

 $f(x) \longrightarrow \min_{x \in X}$

Critical point eq.:

 $\nabla f(x) \stackrel{!}{=} 0$

Gradient descent:

$$x^{k+1} = x^k - s^k \,\nabla f(x^k)$$

Goal:

 $f(x) \longrightarrow \min_{x \in X}$

Critical point eq.:

 $\nabla f(x) \stackrel{!}{=} 0$

Gradient descent:

$$x^{k+1} = x^k - s^k \,\nabla f(x^k)$$

Goal:

 $f(x) \longrightarrow \min_{x \in A \subseteq X}$

Critical point eq.:

 $x \stackrel{!}{=} P_A(x - s \nabla f(x))$

Gradient descent:

 $x^{k+1} = \mathbf{P}_{\mathbf{A}}(x^k - s^k \nabla f(x^k))$

 $s^k \dots$ step size $z = P_A(y)$ realizes min_{$z \in A$} ||y-z||

х r^0

Ά

Goal:

 $f(x) \longrightarrow \min_{x \in A \subseteq X}$

Critical point eq.:

 $x \stackrel{!}{=} P_A(x - s \,\nabla f(x))$

Gradient descent:

 $x^{k+1} = \boldsymbol{P}_A(x^k - s^k \,\nabla f(x^k))$

 $s^k \dots$ step size $z = P_A(y)$ realizes min_{z \in A} ||y-z|| Université franco-allernande Deutsch-Französische Hochschule

Goal:

 $f(x) \longrightarrow \min_{x \in A \subseteq X}$

Critical point eq.:

 $x \stackrel{!}{=} P_A(x - s \,\nabla f(x))$

Gradient descent:

 $x^{k+1} = \boldsymbol{P}_A(x^k - s^k \,\nabla f(x^k))$

 $s^k \dots$ step size $z = P_A(y)$ realizes min_{z \in A} ||y-z||

Goal:

 $f(x) \longrightarrow \min_{x \in A \subseteq X}$

Critical point eq.:

 $x \stackrel{!}{=} P_A(x - s \,\nabla f(x))$

Gradient descent:

 $x^{k+1} = \boldsymbol{P}_A(x^k - s^k \,\nabla f(x^k))$

 $s^k \dots$ step size $z = P_A(y)$ realizes $\min_{z \in A} ||y-z||$

Application to hyperelasticity

• X contains $\varepsilon : Q \to \text{Sym}(d)$ with inner product

 $(\varepsilon_1, \varepsilon_2)_{L^2} = \langle \varepsilon_1 : \varepsilon_2 \rangle_Q$

f(ε) = ⟨w(⋅, ε)⟩_Q for elastic energy, S = ∂w/∂ε
constraint set

 $A = \left\{ \varepsilon \, \middle| \, \varepsilon = \bar{\varepsilon} + \nabla^s u \quad \text{for some periodic} \quad u : Q \to \mathbb{R}^d \right\}$

• any critical point of $f(\varepsilon) \longrightarrow \min_{\varepsilon \in A}$ satisfies

div $S(\cdot, \varepsilon) = 0$

for some *u* with $\varepsilon = \overline{\varepsilon} + \nabla^s u$

$$x^{k+1} = P_A(x^k - s^k \nabla f(x^k))$$

•
$$\nabla f(x) = ?$$

• $P_A = ?$

implicit characterization:

$$(\nabla f(x), v)_X = \frac{d}{ds}f(x + sv)\Big|_{s=0}$$
 for all v

our case:

 $f(\varepsilon) = \langle w(\cdot, \varepsilon) \rangle_Q$

implicit characterization:

$$(\nabla f(x), v)_X = \frac{d}{ds}f(x + sv)\Big|_{s=0}$$
 for all v

$$f(\varepsilon) = \frac{1}{|Q|} \int_Q w(x,\varepsilon) \, dx$$

implicit characterization:

$$(\nabla f(x), v)_X = \frac{d}{ds}f(x + sv)\Big|_{s=0}$$
 for all v

$$f(\varepsilon + s\xi) = \frac{1}{|Q|} \int_Q w(x, \varepsilon + s\xi) \, dx$$

implicit characterization:

$$(\nabla f(x), v)_X = \frac{d}{ds}f(x + sv)\Big|_{s=0}$$
 for all v

$$\frac{d}{ds}f(\varepsilon + s\,\xi)\Big|_{s=0} = \frac{d}{ds}\frac{1}{|Q|}\int_{Q}w(x,\varepsilon + s\,\xi)\,dx\Big|_{s=0}$$

implicit characterization:

$$(\nabla f(x), v)_X = \frac{d}{ds}f(x+sv)\Big|_{s=0}$$
 for all v

$$\frac{d}{ds}f(\varepsilon + s\,\xi)\Big|_{s=0} = \frac{1}{|Q|} \int_Q \frac{d}{ds}w(x,\varepsilon + s\,\xi)\Big|_{s=0} dx$$

implicit characterization:

$$(\nabla f(x), v)_X = \frac{d}{ds}f(x + sv)\Big|_{s=0}$$
 for all v

$$\frac{d}{ds}f(\varepsilon + s\,\xi)\Big|_{s=0} = \frac{1}{|Q|}\int_Q \frac{\partial w}{\partial \varepsilon}(x,\varepsilon):\xi\,dx$$
Gradient?

implicit characterization:

$$(\nabla f(x), v)_X = \frac{d}{ds}f(x + sv)\Big|_{s=0}$$
 for all v

$$(\nabla f(\varepsilon),\xi)_{L^2} = \frac{1}{|Q|} \int_Q \frac{\partial w}{\partial \varepsilon}(x,\varepsilon) : \xi \, dx$$

Gradient?

implicit characterization:

$$(\nabla f(x), v)_X = \frac{d}{ds}f(x + sv)\Big|_{s=0}$$
 for all v

$$\frac{1}{|Q|} \int_{Q} \nabla f(\varepsilon) : \xi \, dx = \frac{1}{|Q|} \int_{Q} \frac{\partial w}{\partial \varepsilon}(x,\varepsilon) : \xi \, dx$$

Gradient?

implicit characterization:

$$(\nabla f(x), v)_X = \frac{d}{ds}f(x+sv)\Big|_{s=0}$$
 for all v

$$\nabla f(\varepsilon) = \frac{\partial w}{\partial \varepsilon}(\cdot, \varepsilon)$$

implicit characterization:

$$z = P_A(x)$$
 minimizes $||x - z||_X^2$ among $z \in A$

our case:

 $\xi = P_A(\varepsilon)$ minimizes $\|\varepsilon - \xi\|_{L^2}^2$ among $\xi \in A$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

 $\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon)$ minimizes $\|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2$ among $\bar{\varepsilon} + \nabla^s u \in A$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon) \quad \text{minimizes} \quad \|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2 \quad \text{among} \quad u : Q \to \mathbb{R}^d,$$

$$\frac{a}{ds} \|\varepsilon - \bar{\varepsilon} - \nabla^s (u + sv)\|_{L^2}^2 \Big|_{s=0} \stackrel{!}{=} 0 \quad \text{for all} \quad v : Q \to \mathbb{R}^d$$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon) \quad \text{minimizes} \quad \|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2 \quad \text{among} \quad u : Q \to \mathbb{R}^d,$$

i.e.,

$$\frac{d}{ds} \|\varepsilon - \bar{\varepsilon} - \nabla^s (u + sv)\|_{L^2}^2 \bigg|_{s=0} \stackrel{!}{=} 0 \quad \text{for all} \quad v : Q \to \mathbb{R}^d$$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon) \quad \text{minimizes} \quad \|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2 \quad \text{among} \quad u : Q \to \mathbb{R}^d,$$

i.e.,

 $(\varepsilon - \overline{\varepsilon} - \nabla^s u, -2\nabla^s v)_{L^2} \stackrel{!}{=} 0 \text{ for all } v : Q \to \mathbb{R}^d$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon)$$
 minimizes $\|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2$ among $u : Q \to \mathbb{R}^d$,
i.e.,

 $(\varepsilon - \overline{\varepsilon} - \nabla^s u, \nabla^s v)_{L^2} \stackrel{!}{=} 0 \text{ for all } v : Q \to \mathbb{R}^d$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon)$$
 minimizes $\|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2$ among $u : Q \to \mathbb{R}^d$,
i.e.,

 $\langle (\varepsilon - \overline{\varepsilon} - \nabla^s u) : \nabla^s v \rangle_Q \stackrel{!}{=} 0 \text{ for all } v : Q \to \mathbb{R}^d$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

i.e.

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon)$$
 minimizes $\|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2$ among $u : Q \to \mathbb{R}^d$,

$$-\langle \operatorname{div} (\varepsilon - \overline{\varepsilon} - \nabla^s u) \cdot v \rangle_Q \stackrel{!}{=} 0 \text{ for all } v : Q \to \mathbb{R}^d$$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon)$$
 minimizes $\|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2$ among $u : Q \to \mathbb{R}^d$,
i.e.,

 $-\operatorname{div}\left(\varepsilon-\bar{\varepsilon}-\nabla^{s}u\right)\stackrel{!}{=}0$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

i.e.

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon) \quad \text{minimizes} \quad \|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2 \quad \text{among} \quad u : Q \to \mathbb{R}^d,$$

div $\nabla^s u \stackrel{!}{=} \operatorname{div} (\varepsilon - \overline{\varepsilon})$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon)$$
 minimizes $\|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2$ among $u : Q \to \mathbb{R}^d$,

i.e.,

div $\nabla^s u \stackrel{!}{=} \operatorname{div} \varepsilon$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

$$\bar{\varepsilon} + \nabla^s u = P_A(\varepsilon) \quad \text{minimizes} \quad \|\varepsilon - \bar{\varepsilon} - \nabla^s u\|_{L^2}^2 \quad \text{among} \quad u : Q \to \mathbb{R}^d,$$

i.e.,

 $u = (\operatorname{div} \nabla^s)^{-1} \operatorname{div} \varepsilon$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

 $\bar{\varepsilon} + \nabla^s (\operatorname{div} \nabla^s)^{-1} \operatorname{div} \varepsilon = P_A(\varepsilon)$

implicit characterization:

 $z = P_A(x)$ minimizes $||x - z||_X^2$ among $z \in A$

our case:

 $P_A(\varepsilon) = \overline{\varepsilon} + \Gamma : \varepsilon$ with $\Gamma \equiv \nabla^s (\operatorname{div} \nabla^s)^{-1} \operatorname{div}$.

$$\varepsilon^{k+1} = P_A(\varepsilon^k - s^k \nabla f(\varepsilon^k))$$

•
$$\nabla f(\varepsilon) = ?$$

• $P_A(\varepsilon) = ?$

$$\varepsilon^{k+1} = P_A(\varepsilon^k - s^k \,\nabla\! f(\varepsilon^k))$$

•
$$\nabla f(\varepsilon) = \frac{\partial w}{\partial \varepsilon}(\cdot, \varepsilon)$$

• $P_A(\varepsilon) = \bar{\varepsilon} + \Gamma : \varepsilon$ with $\Gamma \equiv \nabla^s (\operatorname{div} \nabla^s)^{-1} \operatorname{div}$

$$\varepsilon^{k+1} = P_A\left(\varepsilon^k - s^k \frac{\partial w}{\partial \varepsilon}(\cdot, \varepsilon^k)\right)$$

•
$$\nabla f(\varepsilon) = \frac{\partial w}{\partial \varepsilon}(\cdot, \varepsilon)$$

• $P_A(\varepsilon) = \bar{\varepsilon} + \Gamma : \varepsilon$ with $\Gamma \equiv \nabla^s (\operatorname{div} \nabla^s)^{-1} \operatorname{div}$

$$\varepsilon^{k+1} = \overline{\varepsilon} + \Gamma : \left(\varepsilon^k - s^k \frac{\partial w}{\partial \varepsilon} (\cdot, \varepsilon^k) \right)$$

•
$$\nabla f(\varepsilon) = \frac{\partial w}{\partial \varepsilon}(\cdot, \varepsilon)$$

• $P_A(\varepsilon) = \overline{\varepsilon} + \Gamma : \varepsilon$ with $\Gamma \equiv \nabla^s (\operatorname{div} \nabla^s)^{-1} \operatorname{div}$

$$\varepsilon^{k+1} = \overline{\varepsilon} + \Gamma : \left(\varepsilon^k - s^k \frac{\partial w}{\partial \varepsilon} (\cdot, \varepsilon^k) \right) \quad \text{with} \quad \Gamma \equiv \nabla^s \left(\text{div } \nabla^s \right)^{-1} \text{div}$$

36 14-18 March, 2022 Matti Schneider: Treating inelastic problems with the basic scheme

$$\varepsilon^{k+1} = \overline{\varepsilon} + s^k \, \Gamma : \left(\frac{1}{s^k} \, \varepsilon^k - \frac{\partial w}{\partial \varepsilon} (\cdot, \varepsilon^k) \right) \quad \text{with} \quad \Gamma \equiv \nabla^s \, (\text{div} \, \nabla^s)^{-1} \, \text{div}$$

37 14-18 March, 2022 Matti Schneider: Treating inelastic problems with the basic scheme

$$\varepsilon^{k+1} = \overline{\varepsilon} - s^k \, \Gamma : \left(\frac{\partial w}{\partial \varepsilon} (\cdot, \varepsilon^k) - \frac{1}{s^k} \, \varepsilon^k \right) \quad \text{with} \quad \Gamma \equiv \nabla^s \, (\text{div} \, \nabla^s)^{-1} \, \text{div}$$

38 14-18 March, 2022 Matti Schneider: Treating inelastic problems with the basic scheme

$$\varepsilon^{k+1} = \overline{\varepsilon} - s^k \,\Gamma : \left(\frac{\partial w}{\partial \varepsilon}(\cdot, \varepsilon^k) - \frac{1}{s^k} \,\varepsilon^k\right) \quad \text{with} \quad \Gamma \equiv \nabla^s \,(\text{div} \,\nabla^s)^{-1} \,\text{div}$$

• suppose $s^k \equiv s^0$ • define $\mathbb{C}^0 \equiv \frac{1}{s^0}$ Id • associated $\Gamma^0 \equiv s^0 \Gamma$ • write S = $\partial w / \partial \varepsilon$

$$\varepsilon^{k+1} = \overline{\varepsilon} - s^k \Gamma : \left(\frac{\partial w}{\partial \varepsilon}(\cdot, \varepsilon^k) - \frac{1}{s^k} \varepsilon^k\right) \text{ with } \Gamma \equiv \nabla^s (\operatorname{div} \nabla^s)^{-1} \operatorname{div}$$

- suppose $s^k \equiv s^0$
- define $\mathbb{C}^0 \equiv \frac{1}{s^0}$ Id
- associated $\Gamma^0 \equiv s^0 \Gamma$
- write S = $\partial w / \partial \varepsilon$

$$\varepsilon^{k+1} = \overline{\varepsilon} - s^k \Gamma : \left(\frac{\partial w}{\partial \varepsilon}(\cdot, \varepsilon^k) - \frac{1}{s^k} \varepsilon^k\right) \text{ with } \Gamma \equiv \nabla^s (\operatorname{div} \nabla^s)^{-1} \operatorname{div}$$

- suppose $s^k \equiv s^0$
- define $\mathbb{C}^0 \equiv \frac{1}{s^0}$ Id
- associated $\Gamma^0 \equiv s^0 \Gamma$
- write $S = \partial w / \partial \varepsilon$

$$\varepsilon^{k+1} = \overline{\varepsilon} - s^k \,\Gamma : \left(\frac{\partial w}{\partial \varepsilon}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k\right) \quad \text{with} \quad \Gamma \equiv \nabla^s \left(\operatorname{div} \nabla^s\right)^{-1} \operatorname{div}$$

- suppose $s^k \equiv s^0$
- define $\mathbb{C}^0 \equiv \frac{1}{s^0}$ Id
- associated $\Gamma^0 \equiv s^0 \Gamma$
- write $S = \partial w / \partial \varepsilon$

$$\varepsilon^{k+1} = \overline{\varepsilon} - \Gamma^0 : \left(\frac{\partial w}{\partial \varepsilon} (\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right) \quad \text{with} \quad \Gamma \equiv \nabla^s \left(\operatorname{div} \nabla^s \right)^{-1} \operatorname{div}$$

- suppose $s^k \equiv s^0$
- define $\mathbb{C}^0 \equiv \frac{1}{s^0}$ Id
- associated $\Gamma^0 \equiv s^0 \Gamma$
- write $S = \partial w / \partial \varepsilon$

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left(\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right) \quad \text{with} \quad \Gamma \equiv \nabla^s \left(\operatorname{div} \nabla^s \right)^{-1} \operatorname{div}$$

- suppose $s^k \equiv s^0$
- define $\mathbb{C}^0 \equiv \frac{1}{s^0}$ Id
- associated $\Gamma^0 \equiv s^0 \Gamma$
- write $S = \partial w / \partial \varepsilon$

$$\boldsymbol{\varepsilon}^{k+1} = \boldsymbol{\bar{\varepsilon}} - \boldsymbol{\Gamma}^0 : \left(\mathsf{S}(\cdot,\boldsymbol{\varepsilon}^k) - \mathbb{C}^0 : \boldsymbol{\varepsilon}^k \right)$$

• hyperelastic basic scheme \equiv projected gradient descent

[M. Kabel, T. Böhlke, MS, Comput Mech, 2014]

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left(\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right)$$

■ reference material = inverse step size

$$\mathbb{C}^0 \equiv \frac{1}{s^0} \text{ Id}$$

■
$$s^0$$
 large \Rightarrow instability
■ s^0 small $\Rightarrow f(\varepsilon^{k+1}) < f(\varepsilon^k)$ (unless critical)

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left(\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right)$$

reference material ≡ inverse step size

$$\mathbb{C}^0 \equiv \frac{1}{s^0} \text{ Id}$$

•
$$s^0$$
 large \Rightarrow instability

• $s^0 \text{ small} \Rightarrow f(\varepsilon^{k+1}) < f(\varepsilon^k) \text{ (unless critical)}$

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left(\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k\right)$$

reference material ≡ inverse step size

$$\mathbb{C}^0 \equiv \frac{1}{s^0} \text{ Id}$$

•
$$s^0$$
 large \Rightarrow instability

• $s^0 \text{ small} \Rightarrow f(\varepsilon^{k+1}) < f(\varepsilon^k) \text{ (unless critical)}$

$$\boldsymbol{\varepsilon}^{k+1} = \bar{\boldsymbol{\varepsilon}} - \boldsymbol{\Gamma}^0 : \left(\mathsf{S}(\cdot,\boldsymbol{\varepsilon}^k) - \mathbb{C}^0 : \boldsymbol{\varepsilon}^k \right)$$

import knowledge from optimization, e.g., on convergence

[MS, CMAME, 2017]

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left(\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right)$$

a₊-Lipschitz condition

 $\|S(x,\xi_1) - S(x,\xi_2)\| \le \alpha_+ \|\xi_1 - \xi_2\|$ for all $x \in Q$ and $\xi_1, \xi_2 \in \text{Sym}(d)$

monotone S (convex w)

 $(S(x,\xi_1) - S(x,\xi_2)) : (\xi_1 - \xi_2) \ge 0$ for all $x \in Q$ and $\xi_1, \xi_2 \in Sym(d)$

• choose $\mathbb{C}^0 = \alpha_+$ Id and obtain logarithmic convergence

$$f(\varepsilon^k) - \min f(\varepsilon^*) \le \frac{2\alpha_+ \|\varepsilon^0 - \varepsilon^*\|^2}{k+4}$$

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left(\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right)$$

a₊-Lipschitz condition

 $||S(x,\xi_1) - S(x,\xi_2)|| \le \alpha_+ ||\xi_1 - \xi_2||$ for all $x \in Q$ and $\xi_1, \xi_2 \in Sym(d)$

monotone S (convex w)

 $(S(x,\xi_1) - S(x,\xi_2)) : (\xi_1 - \xi_2) \ge 0$ for all $x \in Q$ and $\xi_1, \xi_2 \in Sym(d)$

• choose $\mathbb{C}^0 = \alpha_+$ Id and obtain logarithmic convergence

$$f(\varepsilon^k) - \min f(\varepsilon^*) \le \frac{2\alpha_+ \|\varepsilon^0 - \varepsilon^*\|^2}{k+4}$$

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left(\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k\right)$$

• α_+ -Lipschitz condition

 $\|S(x,\xi_1) - S(x,\xi_2)\| \le \alpha_+ \|\xi_1 - \xi_2\|$ for all $x \in Q$ and $\xi_1, \xi_2 \in Sym(d)$

strongly α_{-} -monotone S (strongly α_{-} -convex w)

 $(S(x,\xi_1) - S(x,\xi_2)) : (\xi_1 - \xi_2) \ge \alpha_{-} ||\xi_1 - \xi_2||^2$ for all $x \in Q, \xi_1, \xi_2 \in Sym(d)$

• choose $\mathbb{C}^0 = (\alpha_+ + \alpha_-)/2$ Id and obtain linear convergence

$$\|\varepsilon^{k+1} - \varepsilon^*\|_{L^2} \le \left(\frac{\alpha_+ - \alpha_-}{\alpha_+ + \alpha_-}\right) \quad \|\varepsilon^k - \varepsilon^*\|_{L^2}$$

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left(\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right)$$

• α_+ -Lipschitz condition

 $\|S(x,\xi_1) - S(x,\xi_2)\| \le \alpha_+ \|\xi_1 - \xi_2\|$ for all $x \in Q$ and $\xi_1, \xi_2 \in Sym(d)$

strongly α_{-} -monotone S (strongly α_{-} -convex w)

 $(S(x,\xi_1) - S(x,\xi_2)) : (\xi_1 - \xi_2) \ge \alpha_{-} ||\xi_1 - \xi_2||^2$ for all $x \in Q, \xi_1, \xi_2 \in Sym(d)$

• choose $\mathbb{C}^0 = (\alpha_+ + \alpha_-)/2$ Id and obtain linear convergence

$$\|\varepsilon^{k+1} - \varepsilon^*\|_{L^2} \le \left(\frac{\alpha_+ - \alpha_-}{\alpha_+ + \alpha_-}\right) \quad \|\varepsilon^k - \varepsilon^*\|_{L^2}$$

$$\varepsilon^{k+1} = \bar{\varepsilon} - \Gamma^0 : \left(\mathsf{S}(\cdot, \varepsilon^k) - \mathbb{C}^0 : \varepsilon^k \right)$$

• α_+ -Lipschitz condition

 $\|S(x,\xi_1) - S(x,\xi_2)\| \le \alpha_+ \|\xi_1 - \xi_2\|$ for all $x \in Q$ and $\xi_1, \xi_2 \in Sym(d)$

strongly α_{-} -monotone S (strongly α_{-} -convex w)

 $(S(x,\xi_1) - S(x,\xi_2)) : (\xi_1 - \xi_2) \ge \alpha_{-} ||\xi_1 - \xi_2||^2$ for all $x \in Q, \xi_1, \xi_2 \in Sym(d)$

• choose $\mathbb{C}^0 = (\alpha_+ + \alpha_-)/2$ Id and obtain linear convergence

$$\|\varepsilon^{k+1} - \varepsilon^*\|_{L^2} \le \left(\frac{\alpha_+ - \alpha_-}{\alpha_+ + \alpha_-}\right)^{k+1} \|\varepsilon^0 - \varepsilon^*\|_{L^2}$$

On the conditions

• if $S \in C^1$ in ε

$$\alpha_+$$
-Lipschitz $\iff \lambda \le \alpha_+ \quad \forall x, \xi \; \forall \lambda \in \operatorname{Eig}\left(\frac{\partial S}{\partial \varepsilon}(x, \xi)\right)$

 α_{-} -strongly convex $\iff \lambda \ge \alpha_{-} \quad \forall x, \xi \; \forall \lambda \in \operatorname{Eig}\left(\frac{\partial S}{\partial \varepsilon}(x, \xi)\right)$

- maximum/minimum slopes of algo tangent
- estimated on-line
- theory does not cover porosity/softening

On the conditions

• if $S \in C^1$ in ε

$$\alpha_+$$
-Lipschitz $\iff \lambda \le \alpha_+ \quad \forall x, \xi \; \forall \lambda \in \operatorname{Eig}\left(\frac{\partial S}{\partial \varepsilon}(x, \xi)\right)$

 α_{-} -strongly convex $\iff \lambda \ge \alpha_{-} \quad \forall x, \xi \; \forall \lambda \in \operatorname{Eig}\left(\frac{\partial S}{\partial \varepsilon}(x, \xi)\right)$

- maximum/minimum slopes of algo tangent
- estimated on-line
- theory does not cover porosity/softening

On the conditions

• if $S \in C^1$ in ε

$$\alpha_+$$
-Lipschitz $\iff \lambda \le \alpha_+ \quad \forall x, \xi \; \forall \lambda \in \operatorname{Eig}\left(\frac{\partial S}{\partial \varepsilon}(x, \xi)\right)$

 α_{-} -strongly convex $\iff \lambda \ge \alpha_{-} \quad \forall x, \xi \; \forall \lambda \in \operatorname{Eig}\left(\frac{\partial S}{\partial \varepsilon}(x, \xi)\right)$

- maximum/minimum slopes of algo tangent
- estimated on-line
- theory does not cover porosity/softening

Digression Part III

- basic scheme ≡ projected gradient descent
- provides intuition
- import insights from optimization, e.g., Nesterov's book
- projected gradient descent ++ = basic scheme ++ (tomorrow)

The end

matti.schneider@kit.edu