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Introduction

Context and motivation
§ The mechanical properties of materials are strongly influenced by

their microstructure. A key issue in materials science consists in
studying and describing material microstructures by quantitative
rigorous means.

§ Experimental imaging is a straightforward method to probe material
microstructure.

§ Yet, a mathematically-rigorous approach must also be considered :
that of probabilistic models of structures , a.k.a. as stochastic
materials.

§ In this lecture, our aim is to introduce basic notions on random set
theory and methods, applications that allow one to characterize
experimental materials and structures, and tools for studying the
representativity of material images with respect to their apparent
properties.



Example : inclusions in a matrix

Figure – Inclusion of black carbon particles in a rubber matrix (Jean et al.,
Journal of microscopy, 2011).



Example : Coldspray film

Figure – Coating made from a coldsprayed thin film (Bortolussi et al., 2018).



Example : fuel cell

SEM image (segmented) Model

Figure – Multi-phasic anode material from cold-spray (Abdallah et al., 2016).



Example : fuel cell

Compute the physical response on many subvolumes assuming periodic
boundary conditions (as in FFT). Does the mean apparent property tends

to the effective property as the number of subvolumes Ñ8 ?



Models of random structures

§ Microstructure models must be able to account for a wide range of
geometries

§ They must enable the study of various physical and mechanical
properties

§ These models are interesting in that they rely on strong
mathematical foundations
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Models of random structures

§ Random set theory : modern developments originate in the works of
Choquet (1954), Matheron (1965) and Kendall (1974). It aims to
quantify and simulate the morphology of heterogeneous media by
probabilistic means.

§ A random set is usually a stochastic model whose realizations are
closed subsets of Rd (d “ 2 or 3 is the dimension). More generally,
scalar or tensorial functions on Rd (or on a manifold).

§ Random sets based on a rigorous definition theorized by G.
Matheron, defined as random variables in an appropriate metric
space. The probability distribution function of a random set is
completely specified by a probability measure defined on a σ-algebra,
that is, a space containing Rd , the empty set, and which is stable by
a countless number of unions and intersections and by complement.
This algebra is used to define measures on sets of Rd .



Models of random structures

Early attempts on specific models (Rice, S.O., 1944 ; Miles, R.E., 1964).
The general theory and modern understanding was initiated by Matheron
and Kendall.
References :

§ Matheron, G. (1975). Random Sets and Integral Geometry, Wiley,
New York.

§ Kendall, D. (1974). Foundations of a theory of random sets.
§ Serra, J. (1983). Image Analysis and Mathematical Morphology.

Academic Press, Cambridge.
§ Lantuéjoul (2002). Geostatistical Simulation : Models and

Algorithms. Springer, Berlin, Chapter 2.
§ Schneider, R., Weil, W. (2008). Stochastic and Integral Geometry.

Springer-Verlag, Berlin, Heidelberg.



Models of random structures

The theory of random sets originate in image analysis (or mathematical
morphology), i.e. the interest in finding criteria for characterizing random
sets.
Usually, this is achieved in two steps : (i) a transformation of the set ; (ii)
a measure on the transformed set. Mathematical morphology considers
trasnformations that involve comparing two sets, one of them called the
“structuring element”.



Models of random structures

The fundamental theoretical tool for characterizing random sets is the
Choquet capacity (Choquet, 1954) :

T pK q “ PtX X K ‰ ∅u, (1)

The Choquet capacity satisfies :
i) 0 ď T pK q ď 1 for any compact subset K , and T p∅q “ 0,

T pRdq “ 1,
ii) T pK q ď T pK Y K 1q all compact subsets K and K 1,
iii) If Kn is a sequence of decreasing compact subsets (for inclusion) in

Rd , with limit K, then

limnÑ8T pKnq “ T pKq.



Models of random structures

The “hitting functional” T “Choquet capacity” plays the same role for
random sets with inclusion as that of the cumulative distribution function
for random scalar variables with order relation ă (Matheron, 1975).This
interpretation is justified by the following theorem (Choquet 1954 ;
Kendall 1974 ; Matheron 1975) :

Theorem Let T be a functional defined on the set of compact subsets K of
Rd . Then a single probability measure P defined on the σ-algebra
FK exists such that :

PpFK q “ T pK q,

if, and only if, T is a Choquet capacity verifying (i), (ii) and (iii) in
the previous slide.



Models of random structures

The σ-algebra FK is then the smallest σ-algebra containing the closed
sets that meet the compact subsets of Rd :

FK “ tF P F : F X K ‰ ∅u, K P K,

where F is the set of the closed subsets of Rd and K the set of compact
subsets.
This property allows one to define random structures, but also to
characterize them.



Models of random structures

Stationarity : a random set is stationary iff its Choquet capacity is
translation-invariant : T pK q “ T pKxq for all x.

Isotropy : the Choquet capacity is rotation-invariant.

Ergodicity : all realizations of the random set model have the same
Choquet capacity. There are other definitions of ergodicity, see Heinrich,
1992.



Models of random structures

Example : the Boolean random set with homogeneous Poisson point
process P of intensity θ and primary grain G .

T pK q “ 1´ e´θµd pG‘qKq

where qK “ t´x|x P Ku, ‘ is the Minkowski addition :
G ‘ qK “ tx|Kx X G ‰ Hu (Kx “ tx ` y |y P Ku).
This capacity is that of realizations of the Boolean model (Serra, 1981) :

X “
ď

x„P
Gx

The set X is stationary and ergodic.

Boolean models can be considered to play the same role as the normal
distribution for random sets with addition replaced by union. There exists
the equivalent of a central limit theorem for random sets, where unions of
i.i.d. random sets asymptotically tend to Boolean sets (Serra, 1981).



Models of random structures

Random media (microstructures) that fit with Boolean model
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Covariance

Probe the microstructure with compact sets. Spatial law : set of points
K “ tx1, x2, ...., xnu (n ě 1).
Examples :

§ K “ txu. Then : T pK q “ Ptx P Xu.
§ Linear erosion : K “ tx ` spy ´ xq|0 ď s ď 1u.
§ Covariance : K “ tx, yu. Then :

T pK q “ Ptx P X and y P Xu “ Cpx, yq.



Covariance
Useful properties of the covariance function :

§ For stationary media, the covariance depends onlyon h “ x ´ y :
Cphq “ Cpx, yq.

§ For isotropic random sets, Cphq “ Cpx, yq where h “ |x ´ y is a
one-dimensional function.

§ Cp0q “ V pX q the mean d-dimensional volume fraction of X .
§ limhÑ8Cphq “ Cp0q2
§ CpX ; hq “ 1´ 2CpX c ; 0q ` CpX c ; hq where X c is X ’s

complementary set
§ Cphq is periodic if the set X is periodic
§ If Cphq admits the Taylor expansion Cphq “ Cp0q ´ c0h ` Oph2q, c0

is the specific surface area in dimension 3, or specific perimeter, in
dimension 2, of the set X .

§ Cphq ´ Cp0q „ hν (0 ă ν ă 1) for a fractal set X of Hausdorff
dimension dh “ 3´ ν (Matheron, 1989).

§ Anti-correlation phenomena, mean length of cords, angular points,
cusp are some of the geometrical properties that ca be related to
covariances (e.g. Emery and Lantuéjoul, 2011)



Covariance examples
Any function does not define a covariance. Covariances are definite
positive :

n
ÿ

α,β“1
λαλβCphα ´ hβq ě 0, λα, hα P R.

Some exact covariances.

Stable Gaussian Cardinal sine
Cphq “ e´

?
|h|{a Cphq “ e´|h|2{a2 Cphq “ sinp|h|{aq

|h|{a



Covariance examples

For a Boolean model of primary grains G ,

Cphq “ 2p ´ 1` p1´ pq2´kphq{kp0q

with k the covariogram :

kphq “ x|G X Gh|y|h|“h

where the mean is taken over all directions.
Ex : covariogram of cylinders with varying aspect ratio (first obtained by

Gille, 1987)



Integral range

The integral range, homogeneous to a d-dimensional volume, is by
definition :

Ad “

ż

hPRd
ddh Cphq ´ Cp0q2

Cp0qr1´ Cp0qs
where p “ Cp0q is the density of X .
For isotropic models :

Ad “
1

pp1´ pq

ż 8

h“0
SddhrCphq ´ p2s

where Sd is the surface of the d-dimensional sphere.



Integral range

Example : integral range of Boolean models of cylinders vs. density p (in
units of primagry grain volume).

Varying aspect ratios (Willot, 2017)



Representative volume element

Variance D2
X pV q of the apparent density of a stationary random set X ,

computed on d-dimensional domain Ω of volume V :

D2
X pV q “

C

ˆ

p ´ 1
V

ż

Ω
ddxχX pxq

˙2
G

computed over random realizations of X , where p is the observed mean
density, computed over all realizations and χX the characteristic function
of X . For ergodic media, the mean can be computed over subvolumes
“sufficiently” far from each other.



Representative volume element

For N " 1 we have p Ñ p and :

D2
X pV q “

1
NV 2

N
ÿ

i“1

ż

x,yPΩ
ddxddy

“

χX pxqχX pyq ´ p2‰ .

Property : when V " Ad :

D2
X pV q “ pp1´ pqAd

V ` op1{V q.



Representative volume element

Proof :

D2
X pV q “

1
NV 2

N
ÿ

i“1

ż

x,yPΩ
ddxddy

“

χX pxqχX pyq ´ p2‰ .

Use the variable change t “ x ´ y .



Representative volume element

Interpretation of the relation :

D2
X pV q “ pp1´ pqAd

V ` op1{V q.

When V " Ad ,
D2

X pV q „
varpχp0qq

V {Ad

where varpχp0qq is the point variance and n “ V {Ad is the volume size,
expressed in units of integral range.
The D2

X pV q “ varpχp0qq{n represents the variance of a mean of n
independent observations. This is as if the domain V had been divided
into n independent domains of the same size Ad . Ad must then be
interpreted as the scale of the phenomenon (see Lantuéjoul, 1991).



Representative volume element
Special case : when Ad “ 0 (possible when anti-correlations are present),
the variance displays “super-convergence”, i.e. goes to 0 faster than 1{V .

From Lantuéjoul (1991). Dilution function :
ř

yPP f px ´ yq with xf y “ 0.



Representative volume element

Extensions and properties.

Miles-Lantuéjoul correction for subvolumes V of a larger volume V0
(Lantuéjoul, 1991) :

D2
X pV q “ pp1´ pqAd

V

ˆ

1´ V
V0

˙

` op1{V q.

Interpretation : the mean of the values computed on subvolumes is biased
(equal to that in V0), hence there are two sources for the variance, that
of “regular” domains of volume V and that for V0.

Due to the central limit theorem, the distribution of the mean is
asymptotically Gaussian (Legoll, 2014).



Representative volume element

The absolute and relative errors for n samples of volume V are defined
as :

εabs “
2DX pV q
?

n , εrela “
εabs

p “
2DX pV q

p
?

n
The RVE size for a given relative precision εrela is then :

VRVE “
4varpχp0qqAd

nε2
relap2

Note the ε2
rela term. This is because ε is proportional to the standard

deviation. Hence, one additional digit of precision requires in general
100ˆ-larger volume size.



Representative volume element

The precision of a given prediction can conversely be computed as :

εrela “
2stdpχp0qq

?
Ad

p
?

nVRVE

In terms of absolute error :

VRVE “
4varpχp0qqAd

nε2
abs

εabs “
2stdpχp0qq

?
Ad

?
nVRVE



Representative volume element

Example : Voronoi tesselation of space (Kanit et al, 2003) Every cell
colored at random.



RVE for random fields

Straightforward extension of the theory to random functions, i.e. scalar
fields. Spatial distribution of an ergodic, stationary random function
Z pxq :

Fx1,...,xnpz1, ..., znq “ PtZ pxi q ă ziu

The spatial distribution can be extended to a unique probability measure
on a σ-algebra (Kolmogorov, 1933 ; Neveu, 1965).
Covariogram :

K phq “
ż

Rd
dxZ pxqZ px ` hq

Covariance : Cphq “ CovpZ pxq,Z px ` hqq “ K phq ´ p2 where
p “

ş

Rd dxZ pxq
Interal range :

Ad “

ż

Rd
dh

“

Cphq ´ Cp0q2
‰

“ lim
VÑ8

VD2
Z pV q

varpZ pxqq

Extensions to vectorial (Jeulin, 1990) and tensorial fields are delicate.
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The RVE method in homogenization

To apply Matheron’s formula to random fields from stochastic
homogenization one need to solve two problems :

§ (i) The random fields are NOT stationary when boundary conditions
are applied on a volume element ;

§ (ii) Unknown correlations length.
Solution for these two issues :

§ Problem (i) can be solved by considering the solutions of auxiliary
problems with stationary fields that approximate (in a way that can
be controlled) the fields of interest.

§ Problem (ii) can be tracted for certain problems by applying
Matheron’s techniques on the auxiliary fields. Correlation length are
provided by the Green operator.



The RVE method in homogenization
To apply Matheron’s formula to random fields from stochastic
homogenization one need to solve two problems :

§ (i) The random fields are NOT stationary when boundary conditions
are applied on a volume element ;

§ (ii) Unknown correlations length.
Solution for these two issues for elliptic problems :

§ Problem (i) can be solved by considering the solutions of auxiliary
problems with stationary fields that approximate (in a way that can
be controlled) the fields of interest.

§ Problem (ii) can be tracted for certain problems by applying
Matheron’s techniques on the auxiliary fields. Correlation length are
provided by the Green operator.

Main results obtained by Yurinskii (Sibirsk Mat. Zh. ; 1986), Naddaf and
Spencer (1998) and the theory subsequently developed by Gloria and
Otto (2011). More general results by Kozlov (1979), Papanicolaou and
Varadhan (1981) and Künnemann (1983) in the continuum and discrete
case, with ergodic hypothesis.



The RVE method in homogenization

Consider the simple case of a d-dimensional lattice Zd with random
conductivity apx, xq along each bond connecting x and y “ x ` ei .
“Conductivity” problem with macroscopic loading ξ for the gradient field :

´∇˚ ¨ rApξ `∇Φqs pxq “
ÿ

|x´y|“1
“ apx, bmyqrφpxq ´ φpyqs “ 0.

Hypothesis :
§ Uniform ellipticity :

0 ă α ď apx, bmyq ď β

for some α, β ă 8.
§ The apx, bmyq are independently and identically distributed ;



The RVE method in homogenization

Homogenized conductivity defined by :

ξ ¨ Ahomξ “ xpξ `∇φq ¨ Apξ `∇φqy

where the mean is evaluated over random configurations (at any given
point, since the model is stationary).
Since the corrector field φ is ergodic :

ÿ

pξ `∇φq ¨ Apξ `∇φqηL Ñ ξ ¨ Ahomξ

as L Ñ8 where ηL is an averaging function so that
supppηLq Ă t|x | ď Lu, |ηL| À L´d ,

ř

ηL “ 1.
Convergence rate w.r.t. L ?



The RVE method in homogenization

Main problem : the field φ has to be solved on the whole space Zd (for a
single realization).
It is natural to replace the field φ by the field φR solution of :

´∇˚ ¨ rApξ `∇ΦRqs “ 0 in Zd X t|x| ă Ru,
ΦR “ 0 in Zd X t|x| ě Ru,

where R " L.
However φR is not stationary anymore.



The RVE method in homogenization

The main idea in a nutshell : replace the elliptic PDE for the conductivity
problem by :

1
T φT ´∇˚ ¨ rApξ `∇ΦT qs “ 0

the field solution (ΦT ) is
The zero-order term introduces a characteristic length „

?
T in φT .

In a second step, one replaces the above PDE with :

1
T φT ´∇˚ ¨ rApξ `∇ΦT ,Rqs “ 0 in Zd X t|x| ă Ru,

ΦT ,R “ 0 in Zd X t|x| ě Ru,

with unknown ΦT ,R .
With suitable choice of R and L, φT ,R (which can be computed) is a very
good approximation of φT which is a very good approximation of φ as
T Ñ8.



The RVE method in homogenization

Error we make when replacing :

ξ ¨ Ahomξ Ñ
ÿ

pξ `∇φT q ¨ Apξ `∇φT qηL

Two sources of error : finite-size effects (L ‰ 8) and that related to the
cut-off length-scale T :

x|
ř

pξ`∇φT q¨Apξ`∇φT qηL´ξ¨Ahomξ|
2y“x|

ř

pξ`∇φT q¨Apξ`∇φT qηL´xpξ`∇φq¨Apξ`∇φqy|2y

“varr
ř

pξ`∇φT q¨Apξ`∇φT qηLs
loooooooooooooomoooooooooooooon

„L´d in the low-limit contrast

` |x
ř

pξ`∇φT q¨Apξ`∇φT qηLy´xpξ`∇φq¨Apξ`∇φqy|2
loooooooooooooooooooooooooomoooooooooooooooooooooooooon

xp∇φT´∇φq¨Ap∇φT´∇φqy stationarity of φ,φT
„T ´d in the low-contrast limit



The RVE method in homogenization

The choice L „
?

T „ R is “optimal” in the sense that errors due to the
cut-off can then be neglected and finite-size effects are the leading order
term, which scales as :

var
”

ÿ

pξ `∇φT q ¨ Apξ `∇φT qηL

ı

À L´d

except for d “ 2 :

var
”

ÿ

pξ `∇φT q ¨ Apξ `∇φT qηL

ı

À L´dplog Lqqpα,βq

In the above, an additional assumption on the smoothness of ηL is
made : |∇ηL| À L´d´1.
Proof in Gloria and Otto (2011), Annex A. Consider the low-contrast
regime. In that setting, the Lippman-Schwinger equation gives an exact
solution to first-order in the contrast, and depends only on the statistics
of A´ xAy. Variations are given by derivatives w.r.t. apxq, and the Green
identity results in terms η2

L „ L´d .



The RVE method in homogenization

This leads to the scaling-law (Kozlov, Math. Sb, 1979) :

|xALy ´ Ahom| „

$

’

’

&

’

’

%

Cpα, βqL´1 plog Lqqpα,βq if d “ 2,
Cpα, βqL´3{2 if d “ 3,
Cpα, βqL´2 log L if d “ 4,
Cpd , α, βqL´2 if d ě 5.

with d “ 4 the critical dimension. Different from the result of random
fields with finite correlation length.
Results have been extended to the continuum (Gloria and Otto, 2018).



The RVE method in homogenization

The same result holds for periodic boundary conditions (Gloria, ESAIM,
2012) :

|xAL,#y ´ Ahom| „

"

Cpα, βqL´1 plog Lqqpα,βq if d “ 2,
Cpα, βqL´3{2 if d “ 3.

For Dirichlet and Neuman boundary conditions :

|xAL,#y ´ Ahom| „

"

Cpα, βqL´1{2 if d “ 2,
Cpα, βqL´1 if d “ 3.

In general, the fields are disturbed in a region along the surface with a
width of the same order as the charatcertic length in the microstructure.
See Gloria and Mourrat (2012).



Representative volume element

Example : stress field in multi-scale rigidly-reinforced Boolean models in
elasticity (Willot and Jeulin, 2010)



Representative volume element

Comparison between finite element and FFT computations (Jean et al,
2009). Elasticity.



Representative volume element

Example : effect of boundary conditions (Kanit et al, 2003), unifrm
(static, kinematic) and periodic.

As expected, Csubc
app ď Chom ď Ckubc

app . Yet, huge size effects are observed
for uniform boundary conditions, particularly SUBC (porous media).



The RVE method in homogenization

Some references related to RVEs for physical properties :
§ Elasticity in concrete (Escoda et al, 2011).
§ Elasticity and thermal conductivity in fibrous media (Altendorf et al,

2011). Role of the shape of the RVE.
§ Multiscale RVEs (Willot and Jeulin, 2011).
§ Optics in electrostatics for deposit models (Azzimonti et al, 2013).

Singular scaling laws due to surface effects (in 3D) induced by
deposit models.

§ Acoustics (Peyrega et al, 2009)
§ Plasticity (Dirrenberger et al, 2016)
§ Mesoporous alumina (Wang et al, 2014)
§ Permeability (Abdallah et al, 2016)
§ Schneider et al, 2021.



Contents

Introduction

Preliminary on random set theory

Covariance, integral range and RVE

The RVE method in homogenization

Conclusion



Conclusion

§ The size of the representative volume element depends in general on
the property sought for and on the required precision.

§ For the density of random sets, its scaling law can be derived in the
limit of a large RVE as a Taylor expansion. In the absence of
large-scale correlation, this results in a Taylor expansion.

§ The scaling law obeys that of random independent,
identically-distributed scalar variables where the number of i.i.d.
variables is the voluem size, expressed in integral-range unit-size

§ The integral range is the integral of the correlation function.
Accordingly, singular behavior occur when the integral range is
infinite (correlation at infinite length) or zero.



Conclusion (II)

§ Elliptic PDEs (for the simple conductivity problems, with finite
contrast) follow the same trend, up to logarithmic corrections,
provided one uses periodic boundary conditions.

§ The theory may be applied to any self-averaging quantity, e.g. the
field fluctuations, or local fields in one given phase of a composite.

§ Do consider several samples when doing numerical mechanics ! In
most cases, the standard dviation decreases as 1{

?
n so you gain a

lot at the beginning.
§ Mechanics.


