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Introduction

Scope of FFT methods

» By principle, FFT methods rely on a Green operator associated to a
homogeneous material

> In mechanics, this operator serves as a projector onto the space of
curl-free strain fields (small strain assumption) parallel to the space
of divergence-free stress fields (quasi-static balance of
linearmomentum)

» Conservation laws and field admissibility are treated in the Fourier
domain whereas constitutive laws are enforced in the real space

» As such, many problems of physics involving the equivalent of the
“Lippmann-Schwinger” equation can be tackled with FFT. Deriving
FFT schemes is (almost) straightforward in many problems of
quasi-static physics involving heterogeneous materials.
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Conductivity

Linear conductivity in the continuum :
0;Ji(x) =0, Ei(x) = —0;9(x), Ji(x) = 0 (x) Ej(x),

where ®(x) is the electric potential and o (x) is the local conductivity
tensor of the material phase at point x.
Periodic boundary conditions are employed, in the form

Jx)-n —#, O(x+Le)=d(x)—EL, x, x+ LejedQ,

All FFT schemes presented in the previous talks can be deduced from the
following “Lippmann-Schwinger” equation :

E=E—GjxF, P=J-0E,



Conductivity

Linear conductivity in the continuum :
0;Ji(x) = 0, Ei(x) = —0;9(x), Ji(x) = 0j(x) Ej(x),

where ®(x) is the electric potential and o (x) is the local conductivity
tensor of the material phase at point x.
Periodic boundary conditions are employed, in the form

Jx)-n —#, O(x+Le)=d(x)—EL, x,x+ LejedQ,
Equivalent of the “Lippmann-Schwinger” equation in conductivity :

E,'ZE,'*C-;i?ﬂw’:’j7 F’jz_]j—a'oEj



Conductivity
This gives the equivalent of Moulinec & Suquet’s “basic scheme” (Eyre
and Milton, 1998)
EKD —E—G°«P, P=1J—0%6W,

with e.g. E-=9) = E.
An equivalent ‘dual’ formulation stems from writing the problem in terms
of the electric current as

h=di— YT Ti=E-

where p% = 1/59 is the reference resistivity, and J is the prescribed
macroscopic current. The Green operator associated to the governing
equation for the current reads

Hg-(x) =0 {[6(x) —1]d; — O'OG,?(X)},

where §(x) is Dirac’s distribution and J;; is the Kronecker symbol. Thus,
for all T,
HY « Ty = o® (Ti —(Tipa — 0°Gp = Tj) .



Conductivity

Remarks :

» Straightforward extension of all (or nearly all) previously-described
schemes in mechanics to conductivity

> Not just algorithms, but also all discretization schemes can be
extended to conductivity. Discretization is enforced when applying
the Green operator. Symbolically :

_ grad(div-)  V*V.

A O V*.V

oo G

To do so, use the representation in Fourier space for the operators V
and adjoint V*.



Conductivity

cO _ grad(div-) _ V*V-

A V#*.V
Remark (i) : in linear and nonlinear conductivity, we are dealing with
lower-order tensors. It is often sufficient to consider the

forward-and-backward finite-difference scheme which is centered.

g0

This finite-difference scheme is centered.
The “classical” discretization (all fields are trigonometric polynomials) is
also possible and works fine if 0J(x)/dE(x) > 0.



Conductivity

_ grad(div-)  V*V.

A V*V

Remark (ii) : when utilizing finite differences, the operators V and V*
can be computed easily in the real space.

Fourier transforms are required, only when applying (V* - V)~1 = A71.

UOG(O)

1 _
k+1 . 0 k
pF = UO—Adlv [(c — ¢°)(E — grad¢”)]|
Provides a rewriting of the basic scheme in terms of potential (not the
electric field) which is the scalar. Only one FFT (and one FFT1) is
required at each step (could be more depending on the convergence
criterion).

This is optimal in terms of memory (1 potential + 1 microstructure). On
a 16 Gb laptop : 15602 voxels.



Conductivity

Remark (iii) : remark (ii) extends to mechanics, for finite-difference
schemes in which strain fields are admissible at each step. For instance :
staggered discretization schemes with basic gradient descent scheme.

Drawback : harder to parallelize because the computations in the real
space are not local (need to provide for overlap zones).



Conductivity

Remark (iii) : remark (ii) extends to mechanics, for finite-difference
schemes in which strain fields are admissible at each step. For instance :
staggered discretization schemes with basic gradient descent scheme.

Drawback : harder to parallelize because the computations in the real
space are not local (need to provide for overlap zones).



Conductivity

Illustration : nonlinear conductivity on a square lattice with
strongly-nonlinear law.

J(x)
/ Tol

7 Iy

! Efx)
15
10 B o THH {
" 1
e e e L e
| =
0

Electric field localization along minimal path. FFT computation with
forward-and-backward discretization + polarization scheme (Eyre and

Milton, 1998).



Perfect-plasticity

Disgression : Polarization schemes with finite-difference discretization are
good at handling perfect-plasticity in mechanics in porous materials.




Perfect-plasticity

i \
AR

The periodic part of the displacement is computed from the strain field
as (Gasnier et al, 2018) :

|k|4L11 _ (2|k|2 _ Ikl‘Z) kl*f;‘u—kl [(kz*)zf;‘zg + (k;k)2833:|+2 (‘k‘z — Ikl‘Z) [k2*612 + k;<613]—2k1k2*k3*523




Conductivity

Remark (iv) this scheme solves all “diffusion” problems with many
mathematically — albeit not physically — identical equations, equivalent to
the first and second Fick law in static.

Heat conduction (Fourier’s law) : J(x) = kgrad T (x)
» T(x) [T] : temperature at point x
» J(x) [W/m?] : local heat flux
» k [W/m/K] : thermal conductivity
» Steady-state (constant temperature gradient) : divJ(x) = 0

Magnetic permeability : B(x) = p(x)H(x)
First Maxwell equation : rotH =0 or H = —gradU
» B(x) [T] : magnetic field at point x
> H(x) [TA%/N] : auxiliary magnetic field
> 1 [N/A?] : magnetic permeability
» U : magnetic potential
» Gauss's law : divB(x) = 0



Conductivity
Darcy's law : q(x) = %‘gradP(x)
» P(x) [N/m?] : pressure at point x

q(x) [(m3/(m?s)] : fluid flow
> k [m?] : permeability

v

» u [Pa s] fluid viscosity

Hydrogeology, gaz diffusion.

Dielectric permittivity : D(x) = ¢E(x)
» ¢ [F/m] : absolute permittivity
» D(x) [C/m?] : electric displacement field at point x
» E(x) [N/C] : electric field



Conductivity

Coupling. Piezoelectricity (Brenner et al, Phys Rev. B 2009).

ex)=e-T"+ 7x)- "Y'+ P(x), Vx e,

E(x) —E+Y'x 7x)+ A= P(x), Vx e,

NB : imperfect interfaces are much more difficult to handle. Schemes
developed by Monchiet for Kapitza interfaces (2018).

Wicht et al (2020) : thermechanical coupling.
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Electrostatics

Extension to quasi-optics with time-harmonic solicitations. All fields are
proportional to /! where w is the frequency of the sollicitation.

Maxwell equations : rot[rotE(x)] = w?D(x)
Quasi-static assumption w « § : rotE = 0 or E = —gradU
divD(x) = 0 also in electrodynamics.

Optical properties at wavelengths small compared to the typical size of
the material.

Green operator :
kE
co _ L kK
Y oo k,’k,-*
In a way, the implementation becomes even easier as complex-to-complex
Fourier transforms are required.



Electrostatics

Prediction of optical properties of a hematite coating, with nanoparticles.

| Im(e")
1210

(a) Re(Dy), A= 401nm (b) Im(Dy). A= 401nm

Im(e)

381 481 581 681 781 881

*m - (Couka et al, Adv. Sc. Med. and Engng,
2014 ; Azzimonti et al, J. of Modern Optics, 2014)
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Viscoelasticity with Prony series

Time-harmonic regime in mechanics ?

> Fourier decomposition in time : strain and stress history specified as
a series of harmonics. Complex elastic moduli

> Fourier decomposition in space : use of a Green operator associated
to the solution for a homogeneous elastic stiffness tensor

» Discretization of complex microstructures on a regular grid of
voxels ; periodic boundary conditions

> Full-fields reconstruction in space and time



Problem setup

Time-harmonic sollicitation

g(x;t) = e(x)e“", o(x;t) = o(x)e™t, u(x;t) = u(x)e™t (1)
N.B. physical fields
g(x;t) = Re[g(x;1)], o&(x;t) =Re[o(x;t)], u(x;t)=Relt(x;t)]
Small deformation, steady-state regime

gij(x;t) = = [0jti(x; t) + 0;uj(x; t)] 0iji(x;t) = 0.

=N =

6,‘j(X; t) = [@-u,-(x; t)+6,-uj(x; t)], 6,‘0’,’1'(X; t) = 0.

2



Local response

Linear-elastic inclusions :
o(x;t)=Cy:2(x; t), o(x) =Cy:e(x),

Visco-elastic matrix :

de(x; 1)

t
o(x;t) = J_oc drCqy(t—171): o

For an isotropic tensor C; :

o(x) = Ci (k1 17) - €(x)

with : -
k3 (iw) = F1 + iwf dn [ki(n) — Fi]e ™",
0
(x: -
pi (iw) = i + ioJf dn [pa(n) — mx]e™",
0
1= lim k1(t) =0, iz = lim pi(t) = 0.

t—00 t—00



Local response
Example (Maxwell model) :

S (t)dt ~ ~ S (t)dt
a'(t) Ao (t) = 2p0d2N(8), owk(t)

+ d&kk(t> = 3H0d5~kk(t)
ty t

This is equivalent to (Christensen, 2012) :

N t de’ N ‘ dg,
0= [ arame-nT, v = [ arame-nt,

with

_ _ 0 ift<O,
:ul(t) = Ho€ t/tIIH(t)a Hl(t) = ko€ t/tlH(t)v H(t) = { 1 ift>0.
Time-FFT provides the complex moduli :

1+ 1/(iwty)

i (iw) = %a w1 (iw)



Boundary conditions

Periodic boundary conditions with time-harmonic macroscopic strain
loading

(e(x)) =2, ex)#, ox)#

Effective properties
T ={(o(x))=C":e

N.B. for non-harmonic strain loading a(t) = (&(x; t))

a(t) 1 JOO dw a(w)e™*.

:E_OO

Strain field recovered as a superposition of harmonic responses

0

1 .
E(x;t) = EJ dwe, (x)e“".

—0



FFT scheme for the viscoelastic response

Extension of FFT scheme to complex elastic moduli straightforward but
differ in one instance. Symmetry with complex-valued fields :

En(x;t) =en(x;t), owix;t)=oar(xt),
en(x) = ex(x), owu(x)=oi(x).
Gg,k/(Q) = Gﬁ,k/(‘l) = Gi?',/k(ﬁ) = [GE/,U(Q)]*-
== Chu=(CRy)" = Cy

The reference must be real. Scheme applied with basic scheme (Figliuzzi
et al, 2016) or polarization-based method (Gallican et al, 2019 ; André et

al, 2021). They use : ko = /K1K2, to = /U142



Validation : FE-FFT comparison

Stiff inclusion with periodic boundary conditions embedded in a
viscoelastic matrix defined by a Prony series. Local stress o,(x) (2D
section). FEM (Abaqus) vs. FFT.

From Figliuzzi et al, 2016.



Validation : comparison with analytical estimates

Loss angle 6 = Z (=) /R (=), periodic array of spheres of radius R
Viscoelastic matrix defined by a Prony series.

f (Hz) R=0 R=5
Cohen (2004) | FFT Cohen (2004) | FFT
1 || 0.033504 0.033504 || 0.033504 0.033502
5 || 0.038662 0.038662 || 0.038661 0.038659
10 || 0.040469 0.040469 || 0.040468 0.040466
50 || 0.04646 0.04646 0.04646 0.046456
100 || 0.050326 0.050326 || 0.050325 0.050322
R =20 R =140
1 || 0.033479 0.033451 || 0.033054 0.032757
5 || 0.038631 0.038598 || 0.038123 0.037769
10 || 0.040436 0.040401 || 0.039895 0.039519
50 || 0.046421 0.04638 0.045773 0.045326
100 || 0.050282 0.050237 || 0.049567 0.049074




FFT maps

Silica and carbon black materials used as nanoscopic fillers to improve
the stiffness of rubbers (from Figliuzzi et al.).

Mean stress field Im(o,,) (2D section). Material subjected to strain
loading e, = 1%. Frequency : w = 1117 Hz.

oy " ol




Effective response

Effective shear modulus ;¢ vs. frequency w

Re(p) [MPa] Imag(n) [MPa]
T T T T T . .
x X x x
xxxi + + + o+ + }Sli]olcanM ol
3k Xxxx”"‘ﬁ** | 10”')( lohnson-Mel
Ry
2F  + Boolean Hashin 1
xJohnson-Mehl . o
coating 10
s Hashin
¥ .
coating
5 ]03 o A Tl Tl L L
10 w00 10" 1w 10 w0 10 o
o [rad/s] o [rad/s]

Rigorous bounds on the complex shear and bulk moduli of two-phase
media given by Milton & Berryman (1997)



Viscoelasticity
Comparison with a time-explicit scheme :

o (t)dt ~ ~ 5 (t)dt
SO 151y = 2ppadi(e), Te)dt

+ d&kk(f) = 3Iiodgkk(t)
t t

E(x;t) =0, a(x;t) =0
for t < ty. For t > ty, the material is subject to harmonic strain loading :
(&(x; t)) = cos(wt)E
Take ty = w/(2w). The stress field o at time t + dt is then computed by
explicit time-discretization. For instance, for the deviatoric parts :
ol(x, t)At
t
AGI(x,t) = o1(x, t + At) —o1(x, t), A&I(x,t) =&I(x,t+ At)—Er(x,t).

Equivalent to a thermoelastic stress-strain relation with unknown AZ and
AG and with applied strain loading :

(AEr(x,t)y = —wsin(wt)Ate
See e.g. Badulescu et al (2015).

AGI(x, t) = 2uPAEI(x, t) —

)



Viscoelasticity

Example (stiff inclusion in Maxwell matrix, periodic array of spheres,
from Figliuzzi et al.)

€, (time-
explicit)

G, (time-
explicit)
1

5 10 15 t (S)

Pros and cons : the Prony series FFT scheme is useful for complex
viscoelastic laws that require a large number of fields at previous time
steps. In the harmonic case, the memory required is only two times that
of the classical “real” schemes. Cons : harmonic regimes only; must be

linear viscoelasticity.
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Damage in heterogeneous media

Polycrystal subjected to thermal cycles (cooling, re-heating)

Describe damage evolution
problem. Irreversibility.

initiation, propagation. Strongly nonlinear



Variational principle

Total energy of a domain Q containing cracks along surfaces T,
submitted to a deformation field ¢(x).

E(e,[)=E(e)+ E(l) = W (e(x))dx + %f ds
o\r r
E(e) : stored elastic energy; E(I') fracture surface energy, according to
Griffith criterion of fracture; 7. thoughness (specific surface energy).
Variational principle of Francfort and Marigo (JMPS, 1998). The
total energy (over all admissible fields €) is minimized during the fracture
process :

(e,T) = arginfe {Lz\r %c—:(x) :C(x) : e(x) + 7e fr dS}

in elasticity.



Variational principle

Solve :

1
(e,T) = arginfe f —e(x): C(x) : e(x) + ’ycf ds
’ ar 2 r
in the space of physically-admissible strain fields :
ee K@) ={g;3u: € = (Vu)sym, {e) =&}
(assuming small deformations). At fixed I' (no damage evolution) : the

stress tensor o = C : € is divergence-free (dive = 0, o - n is the force per
unit surface)

NB : Mumford-Shah functional :

min J- lu— g|? +%J ds +J |Vul?
() (Janr r Q\r



Variational principle
One-dimensional problem : beam under traction (Bourdin, 2007)

Before fracture, at the onset of fracture, after failure

! N
;
Singular stress fields

K,

o=
2zr




Phase field models for fracture of homogeneous isotropic

media
The variational principle can not in general be solved numerically.

Regularization : introduction of a phase field ®(x)(0 < ®(x) < 1) with
®(x) =1 along the crack and ®(x) = 0 away from the crack. This
setting requires an additional length scale parameter /.

The volume integral E(e) is replaced by §,(1 — ®)?W(e(x))dx.

The surface integral £(T) is replaced by ¢ {o (5% + VO - V)dx
(Bourdin, 2007 ; Bourdin, Francfort and Marigo, 2008).

Resulting variational principle : minimization over admissible stress field
and ®(x) of the volume integrals

1
arginf . o) {L(l — ®)2W (e(x))dx + e JQ dx (2€¢2 + gVCD . VdJ) }

eeK(E) ={e;qu: € = (VU)sym, (&) =€}

Enough to do initiation and propagation.



Phase field models for fracture of homogeneous isotropic
media

Usually solved by Finite Element Methods.
From Kalthoff and Winkler (1987) (left) and Hokacker (2012) (right).
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PDE for the phase field model

Functional minimization provides :

e(x) = (Vu(x))sym,  (e(x)) =&,
o = (1—-¢(x))’C(x) : e(x), div(e) = 0.

for the linear elastic problem.

For the phase-field problem (Miehe, IJNME 2010) :

2(1 — O)YH — o /l(P — PAD) =0

with elastic energy H(x,t) = W(e) = 3e: C : € acting as “source term”.

Irreversibility : H(x, t) = sup, ., W(e, 1)



Fourier-based method

Unilateral law. Essential in compression. E.g. model of Miehe :
oc=(1-¢)’C:etC:e", et = 5fnk @ ny.

Irreversibility. ¢ can not decrease. Change the source term :
H(x, t) = maxogs<t {WT(x,s)} with WT(e) = Ut (eT) (depends on the
tensile parts of the strain due to unilateral effect).

Anisotropic tenacity (second-order tensor).

Non-zero elastic moduli in regions where ¢ = 1 using :
(1 — #(x))?C(x) — (1 — ¢(x) + k)?C(x) with k << 1
Damping parameter :

2(1 — OYH — 7 /U — PAD) = o



Fourier-based method

Chen and Gelebart (2021) proposed to solve the equation in ¢ with a
“basic scheme”

0 (q) = 2D K (x = B(x) — (Alx — Aol
Av+q-q’ ’
(terms Ag and B detailed in Chen and Gélébart, 2021). x is the
polarization field for phase-field problem and we use the Green operator
associated to the Helmholtz equation (no pole).

Several strategies are possible (not detailed here) :

“sequential” : solve each problem for € and ¢ separately (small time steps
required). Each problem in € and ¢ is convex.

“implicit” : solve the full problem at each time step.

Other authors proposed FFT methods for phase field problem, e.g. Jeulin
(1JSS, 2021) or Ernesti et al (2021) who used an implicit solver.



Phase field models for fracture of homogeneous isotropic

media
Phase-field predicted by Chen and Gélébart (2021)

0
0 0005 001 0015 002




Phase field models for fracture of homogeneous isotropic
media

Comparison with finite element method

Zoom

FE: Molnar et al, 2017
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Performance and accuracy : comparison with FEM



Performances

From Bary et al, 2011 (linear elasticity)
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Performances and accuracy

Numerical optimization of microstructures properties with viscoelastic
behavior (Koishi et al, 2017).

4,000 configurations of 10243 each on TSUBAME supercomputer at
Global Scientific Information and Computing Center in Tokyo Institute of
Technology though the HPCI System Research Project

Radius of Aggregate

Filler Bound Rubber

of Aggregate

Aggregate

Poisson Poi

'\ \ J Figure 4. Cross section of six 3D simulation medels generated

\ ' ‘with different Poisson point intensity and radius of aggregate,
Exclusion Polymer ‘domain size: 1,000nm x 1,000nm x 1,000nm, the volume frac-

Polymer tion of filler: 15%, the radius of filler: 10nm, the thickness of
V! bound rubber: 5nm.




Performances and accuracy

From Koishi et al, 2017. Use of the rotated scheme with polarization
method.

16403 1E08
16402
16404
_1ED01
@ .
o 8
8
E1ew00 o 102
E
5 £
H
1E01
1.E+00
1E02
1603 1602
1E+02 TEWM 1EWE 1EMB 1E410 16402 16404 1E06 16408 1E410
Number of elements Number of elements

Figure 6. Required memory size of the FFT:based scheme and Figure 5. Computation time of the FFT-based scheme and
FEM against the number of elements. FEM against the number of elements.



Performances and accuracy

Dealing with cracks.




Performances and accuracy
From Gasnier et al (2018).

(a) (b) (c) (d)

Figure 2: Stress component o, in a region centered around an isolated crack tip, in a 2D medium. (a): Asymptotic
expansion (5); (¢-d): FFT predictions for the backward-and-forward scheme (FFT-BF) on grids of 40962 (c) and
1282 voxels (d); (b): local averages of the asymptotic expansion (a) on the same coarse voxel-grid as used in (d).
The same color map, ranging from blue (lowest value) to red (highest value) is used in maps (a-d).

G (x= 0.0002,y)
T T T T T T

« FFT-BF (0.03m dof)

4k — FFT-BF (34m dof) B
— Asymptotic expansion
o, (xy=0)
sf w ]

A B
FN 022317

5

! 1
-0.1 0 0.1 02 03 04

Figure 1: Periodic array of cracks in plane strain: profile of the stress component 7, along the segment r = 2 1074,
~0.15 < y < 0.5, close to the crack tip at & = y = 0. Solid black line and purple dots: Fourier backward-and-
forward scheme with 34 millions and 32 thousands degrees of freedom. Solid blue line: asymptotic expansion near
the crack tip (5) fitted with the value Ky = 0.556. Embedded graph (right): plot of o, along the segment y = 0,
2> 0, in log-log scale.




Performances and accuracy

. mat
EE™ ‘ i i E/E
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0.981 : SF;:;:;;IRVJ:;I?EII)(I) 1 000 — Sevostianov et al. (I)
& FFTR (parallely

097 x FFT-MS (transverse) | 0.99)
w FFT-R (transverse) +
o 0.985]

096 7 + FFT-MS (parallel)

A FFT-R (parallel)
x FFT-MS (transverse)
© FFT-R (transverse)

© FFT-BF (iransverse)
FFT-MS (ellipsoid)

Figure 10: Influence of the crack’s width w on the effective elastic moduli of a periodic array of cracks: Young

moduli £, and E,. Symbols: FFT data points for cracks with cylindrical shape oriented parallel (black) and
transverse (red) to the voxel grid and for ellipsoidal cracks with axis parallel to the voxel grid (blue). Solid lines:

exact result for non-interacting parallel ellipsoidal voids. Black: with the same volume as the cylinders (method
I). Blue: with lowest semi-axis w/2 (method II).



Cracks

From Gasnier et al (2018). Displacement field. Use of different
discretizations.

u (x=-0.0977,0) u(x=-0.0057,0)
S s
0189 0.075)
a a
0.187] N a -
a
o 8 of 007 PEBCERSER
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T OFE-Q ° 7 omq
0.185] ¥FEL 00697 YFEL
° S EFIBF o o O FFT-BF
o. AFFT-R AFFT-R
) 10 10° 10 dof. 10° 107 10° 10 dof
(a) (b)

Figure 9: Continuation of Figs. 7 and 8: one value of the displacement component u, in the middle of the crack
y=0,z .977) (a) and near the crack-tip (y = 0, & = —0.0057) (b), as a function of the number of degrees
of freedom: finite element with linear elements (stars), quadratic elements (diamonds), Fourier methods with
backward-forward (squares) and rotated (triangles) schemes.

Liu et al, (2020) report a 5 to 10% difference.

6. The o, ) CPITT v )T compion o 3 s view
o the crack p (displayingthe dshed-bax regon shown in i 51



» Lucarini and Segurado (Computational Mechanics, 2019). Crystal
plasticity with fatigue. Difference of the order of 7%. FFT is 6-7
times faster and allows to compute models with sizes not accessible
using FEM.

» Vondrejc and de Geus (Journal of Computational and Applied
Mathematics, 2020) : FEM more accurate than FFT when the
material properties display jumps, mixed results obtained when the
material properties vary smoothly.
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Stokes flow

Incompressible Newtonian fluid with viscosity u :

pwAu = V-P (Stokes equation)
u = 0 (no-slip boundary condition at fluid-solid interface)
divu = 0 (fluid incompressibility)

Periodic boundary conditions :

P(x) = a- x + ¢(x), P#, u#

Loading : pressure drop ae =<V - P)

Permeability « :
wuy =V -Py=k -«



FFT methods for Stokes flow

Stokes equation equivalent to :
d(X) = (gradu(x))s‘/ﬁ'” dm = 07

o(x) =2ud(x) — P(x)l, P(x) = a-x + ¢(x)
dive =0

Idea (Bignonnet and Dormieux, 2014) : extend the equations over the
solid phase, treated as an incompressible viscuous fluid with infinite
viscosity (p = o0). No-slip boundary condtions automatically met,
however rigid body motion of the solid domain must be prevented. If
there is one connected component spaning the medium, it is sufficient to
enforce u = 0 at one point in the solid phase or on average.

There must be body forces in the solid phase that counterbalance the
macroscopic fluid pressure gradient.

(x) 0 solid divo — —a/f; solid
px) = if  otherwise. N 0 otherwise.



FFT methods for Stokes flow

Introduce a reference viscosity 1 and recast the problem as :

o(q) = —Y°(q) - F(q) — A%q) : [d(q) - % L o(x)]
d(o) = AX)[o(x) ~ PN, Ax) = iw(x) + 5o (x)

i .
Y%(q) = W[((Sij% + 0q; + 0ai)lql> — 2qiq;qk], f = div(akxx)

Iterative scheme (Monchiet and Bonnet, 2009) :
c“*(q) = o"(q) - A%q) : d“(q), o'(q)=-Y°(q)-f(q)

Common choices : t® = s or 1i® = 2, 4pus (in-between pir and o).



FFT methods for Stokes flow

Bignonnet and Dormieux : polarization scheme with variational
framework. Introduce a reference viscosity 10 :

7(x) = o(x) — 2u°d(x)

Green function G, third-order Green operator G°, fourth-order Green
operator I :

u = u+ Go*fsflxsa-ygo*r,
d = _|—O *T+t gO % f‘s—lXSa
with@ = —feHSG0+ x5 - a = —G§° - «

Tensors G% G° and I® have simple forms in Fourier space (for the
problem in the continuum).

In these methods, the solid phase must form one continuous phase.
Different discretizations (e.g. finite-differences) are possible. See
Bignonnet (2020).



FFT methods for Stokes flow

Method developed by A. Wiegmann (2007). Velocity field evaluated at
the center of the voxel faces, pressure field at the center of the voxels.

With local centered differences, Au and V - P evaluated at the center of
voxel faces, and divu at the voxel centers.

Silu(x + &) + u(x — &) —2u(x)]
h2 )
P(X+ e,-) — P(X)
h )
(div)(x) ~ (diveu)(x) =) ui(x + €;/2) ; ui(x — €/2)

i

Au(x) ~ Apu(x)=

(0iP)(x + €/2) ~ (V4P)-e =




FFT methods for Stokes flow

No slip boundary conditions ?

Method “FFF” : u = 0 along blue and black points. Enforces normal and
tangential no-slip boundary conditions.
Discretized system rewritten as

ulApu =VyP+f

The force f takes non-zero values along the fluid-solid interface. Fields P
and u can be computed from f. System solved by conjugate gradient
method. Popisson equation solved by FFTs (Wiegmann, 2007).



Results : 2D cylindrical obstacle

Velocity field (horizontal component). Exact solution obtained using the
asymptotic expansion of Sangani & Acrivos (1981). FFF 1002 voxels.
Error x20.

As expected, the error is maximum along the interface.



Results : 2D cylindrical obstacle

Fluid flow inside anode material used in fuel cells (Abdallah, 2016).




Contents

Conclusion



Topics not addressed here :
» Dislocations. Bertin, Capolungo, Berbenni, Suquet, Brenner.
» Strain gradients. Gélébart, Forest.
» Periodic boundary conditions.

» Finite strain. Lahellec (2003), Lebensohn (2013), Kabel (2014).
Requires a different Green operator to take into account local
rotations.
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