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Introduction

Scope of FFT methods
§ By principle, FFT methods rely on a Green operator associated to a

homogeneous material
§ In mechanics, this operator serves as a projector onto the space of

curl-free strain fields (small strain assumption) parallel to the space
of divergence-free stress fields (quasi-static balance of
linearmomentum)

§ Conservation laws and field admissibility are treated in the Fourier
domain whereas constitutive laws are enforced in the real space

§ As such, many problems of physics involving the equivalent of the
“Lippmann-Schwinger” equation can be tackled with FFT. Deriving
FFT schemes is (almost) straightforward in many problems of
quasi-static physics involving heterogeneous materials.
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Conductivity

Linear conductivity in the continuum :

BiJipxq “ 0, Eipxq “ ´Bi Φpxq, Jipxq “ σijpxqEjpxq,

where Φpxq is the electric potential and σpxq is the local conductivity
tensor of the material phase at point x.
Periodic boundary conditions are employed, in the form

Jpxq ¨ n ´#, Φpx` Leiq ” Φpxq ´ E iL, x, x` Lei P BΩ,

All FFT schemes presented in the previous talks can be deduced from the
following “Lippmann-Schwinger” equation :

Ei “ E i ´ G0
ij ˚ Pj , Pj “ Jj ´ σ

0Ej ,



Conductivity

Linear conductivity in the continuum :

BiJipxq “ 0, Eipxq “ ´Bi Φpxq, Jipxq “ σijpxqEjpxq,

where Φpxq is the electric potential and σpxq is the local conductivity
tensor of the material phase at point x.
Periodic boundary conditions are employed, in the form

Jpxq ¨ n ´#, Φpx` Leiq ” Φpxq ´ E iL, x, x` Lei P BΩ,

Equivalent of the “Lippmann-Schwinger” equation in conductivity :

Ei “ E i ´ G0
ij ˚ Pj , Pj “ Jj ´ σ

0Ej ,



Conductivity
This gives the equivalent of Moulinec & Suquet’s “basic scheme” (Eyre
and Milton, 1998)

Epk`1q “ E´ G0 ˚ P, P “ J´ σ0Epkq,

with e.g. Epk“0q ” E.
An equivalent ‘dual’ formulation stems from writing the problem in terms
of the electric current as

Ji “ J i ´ H0
ij ˚ Tj , Tj “ Ej ´ ρ

0Jj ,

where ρ0 “ 1{σ0 is the reference resistivity, and J is the prescribed
macroscopic current. The Green operator associated to the governing
equation for the current reads

H0
ij pxq “ σ0  rδpxq ´ 1s δij ´ σ

0G0
ij pxq

(

,

where δpxq is Dirac’s distribution and δij is the Kronecker symbol. Thus,
for all T,

H0
ij ˚ Tj “ σ0 `Ti ´ xTiyΩ ´ σ

0G0
ij ˚ Tj

˘

.



Conductivity

Remarks :
§ Straightforward extension of all (or nearly all) previously-described

schemes in mechanics to conductivity
§ Not just algorithms, but also all discretization schemes can be

extended to conductivity. Discretization is enforced when applying
the Green operator. Symbolically :

σ0Gp0q “ gradpdiv¨q
∆ “

∇˚∇¨
∇˚ ¨∇

To do so, use the representation in Fourier space for the operators ∇
and adjoint ∇˚.



Conductivity

σ0Gp0q “ gradpdiv¨q
∆ “

∇˚∇¨
∇˚ ¨∇

Remark (i) : in linear and nonlinear conductivity, we are dealing with
lower-order tensors. It is often sufficient to consider the
forward-and-backward finite-difference scheme which is centered.

This finite-difference scheme is centered.
The “classical” discretization (all fields are trigonometric polynomials) is
also possible and works fine if BJpxq{BE pxq ą 0.



Conductivity

σ0Gp0q “ gradpdiv¨q
∆ “

∇˚∇¨
∇˚ ¨∇

Remark (ii) : when utilizing finite differences, the operators ∇ and ∇˚
can be computed easily in the real space.
Fourier transforms are required, only when applying p∇˚ ¨∇q´1 “ ∆´1.

φk`1 “
1

σ0∆div
“

pσ ´ σ0qpE´ gradφkq
‰

Provides a rewriting of the basic scheme in terms of potential (not the
electric field) which is the scalar. Only one FFT (and one FFT´1) is
required at each step (could be more depending on the convergence
criterion).

This is optimal in terms of memory (1 potential + 1 microstructure). On
a 16 Gb laptop : 15603 voxels.



Conductivity

Remark (iii) : remark (ii) extends to mechanics, for finite-difference
schemes in which strain fields are admissible at each step. For instance :
staggered discretization schemes with basic gradient descent scheme.

Drawback : harder to parallelize because the computations in the real
space are not local (need to provide for overlap zones).



Conductivity

Remark (iii) : remark (ii) extends to mechanics, for finite-difference
schemes in which strain fields are admissible at each step. For instance :
staggered discretization schemes with basic gradient descent scheme.

Drawback : harder to parallelize because the computations in the real
space are not local (need to provide for overlap zones).



Conductivity

Illustration : nonlinear conductivity on a square lattice with
strongly-nonlinear law.

Electric field localization along minimal path. FFT computation with
forward-and-backward discretization + polarization scheme (Eyre and
Milton, 1998).



Perfect-plasticity
Disgression : Polarization schemes with finite-difference discretization are
good at handling perfect-plasticity in mechanics in porous materials.



Perfect-plasticity

The periodic part of the displacement is computed from the strain field
as (Gasnier et al, 2018) :

|k|4u1 “
´

2|k|2 ´ |k1|
2
¯

k˚
1 ε11´k1

„

´

k˚
2

¯2
ε22 `

´

k˚
3

¯2
ε33



`2
´

|k|2 ´ |k1|
2
¯ ”

k˚
2 ε12 ` k˚

3 ε13

ı

´2k1k˚
2 k˚

3 ε23



Conductivity
Remark (iv) this scheme solves all “diffusion” problems with many
mathematically – albeit not physically – identical equations, equivalent to
the first and second Fick law in static.

Heat conduction (Fourier’s law) : Jpxq “ kgradT pxq
§ T pxq [T] : temperature at point x
§ Jpxq [W/m2] : local heat flux
§ k [W/m/K] : thermal conductivity
§ Steady-state (constant temperature gradient) : divJpxq “ 0

Magnetic permeability : Bpxq “ µpxqHpxq
First Maxwell equation : rotH “ 0 or H “ ´gradU

§ Bpxq [T] : magnetic field at point x
§ Hpxq [TA2/N] : auxiliary magnetic field
§ µ [N/A2] : magnetic permeability
§ U : magnetic potential
§ Gauss’s law : divBpxq “ 0



Conductivity

Darcy’s law : qpxq “ ´k
µ gradPpxq

§ Ppxq [N/m2] : pressure at point x
§ qpxq [(m3/(m2s)] : fluid flow
§ k [m2] : permeability
§ µ [Pa s] fluid viscosity

Hydrogeology, gaz diffusion.

Dielectric permittivity : Dpxq “ εEpxq
§ ε [F/m] : absolute permittivity
§ Dpxq [C/m2] : electric displacement field at point x
§ Epxq [N/C] : electric field



Conductivity

Coupling. Piezoelectricity (Brenner et al, Phys Rev. B 2009).

NB : imperfect interfaces are much more difficult to handle. Schemes
developed by Monchiet for Kapitza interfaces (2018).

Wicht et al (2020) : thermechanical coupling.
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Electrostatics
Extension to quasi-optics with time-harmonic solicitations. All fields are
proportional to eiωt where ω is the frequency of the sollicitation.

Maxwell equations : rotrrotEpxqs “ ω2Dpxq

Quasi-static assumption ω ! δ : rotE “ 0 or E “ ´gradU

divDpxq ” 0 also in electrodynamics.

Optical properties at wavelengths small compared to the typical size of
the material.

Green operator :

Gp0qij “
1
σ0

kik˚j
kik˚i

.

In a way, the implementation becomes even easier as complex-to-complex
Fourier transforms are required.



Electrostatics

Prediction of optical properties of a hematite coating, with nanoparticles.

(Couka et al, Adv. Sc. Med. and Engng,
2014 ; Azzimonti et al, J. of Modern Optics, 2014)
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Viscoelasticity with Prony series

Time-harmonic regime in mechanics ?
§ Fourier decomposition in time : strain and stress history specified as

a series of harmonics. Complex elastic moduli
§ Fourier decomposition in space : use of a Green operator associated

to the solution for a homogeneous elastic stiffness tensor
§ Discretization of complex microstructures on a regular grid of

voxels ; periodic boundary conditions
§ Full-fields reconstruction in space and time



Problem setup

Time-harmonic sollicitation

rεpx; tq “ εpxqeiωt , rσpx; tq “ σpxqeiωt , rupx; tq “ upxqeiωt (1)

N.B. physical fields

pεpx; tq “ Re rrεpx; tqs , pσpx; tq “ Re rrσpx; tqs , pupx; tq “ Re rrupx; tqs

Small deformation, steady-state regime

rεijpx; tq “ 1
2 rBjruipx; tq ` Birujpx; tqs , Birσijpx; tq “ 0.

εijpx; tq “ 1
2 rBjuipx; tq ` Biujpx; tqs , Biσijpx; tq “ 0.



Local response
Linear-elastic inclusions :

rσpx; tq “ C2 : rεpx; tq, σpxq “ C2 : εpxq,

Visco-elastic matrix :

rσpx; tq “
ż t

´8

dτ C1pt ´ τq : drεpx; τq
dτ .

For an isotropic tensor C1 :

σpxq “ C˚1 pκ˚1 , µ˚1 q : εpxq

with :
κ˚1 piωq “ κ1 ` iω

ż 8

0
dη rκ1pηq ´ κ1s e´iωη,

µ˚1 piωq “ µ1 ` iω
ż 8

0
dη rµ1pηq ´ µ1s e´iωη,

κ1 “ lim
tÑ8

κ1ptq ě 0, µ1 “ lim
tÑ8

µ1ptq ě 0.



Local response
Example (Maxwell model) :

rσ1ptqdt
t1

` drσ1ptq “ 2µ0drε1ptq, rσkkptqdt
t1

` drσkkptq “ 3κ0drεkkptq

This is equivalent to (Christensen, 2012) :

rσ1ptq “
ż t

´8

dτ 2µ1pt ´ τq
drε1pτq

dτ , rσkkptq “
ż t

´8

dτ 3κ1pt ´ τq
drεkkpτq

dτ ,

with

µ1ptq “ µ0e´t{t1Hptq, κ1ptq “ κ0e´t{t1Hptq, Hptq “
"

0 if t ă 0,
1 if t ą 0.

Time-FFT provides the complex moduli :

µ˚1 piωq “
µ0

1` 1{piωt1q
, κ˚1 piωq “

κ0
1` 1{piωt1q

.



Boundary conditions

Periodic boundary conditions with time-harmonic macroscopic strain
loading

xεpxqy “ ε, εpxq#, σpxq#.

Effective properties
σ “ xσpxqy “ Ceff : ε.

N.B. for non-harmonic strain loading αptq “ xrεpx; tqy

αptq “ 1
2π

ż 8

´8

dω αpωqeiωt .

Strain field recovered as a superposition of harmonic responses

rεpx; tq “ 1
2π

ż 8

´8

dω εωpxqeiωt .



FFT scheme for the viscoelastic response

Extension of FFT scheme to complex elastic moduli straightforward but
differ in one instance. Symmetry with complex-valued fields :

pεklpx; tq “ pεlkpx; tq, pσklpx; tq “ pσlkpx; tq,

εklpxq “ εlkpxq, σklpxq “ σlkpxq.

G0
ij,klpqq “ G0

ji,klpqq “ G0
ij,lkpqq “

“

G0
kl,ijpqq

‰˚
.

C0
ij,kl “ C0

ji,kl “ C0
ij,lk “

`

C0
kl,ij

˘˚
“ C0

kl,ij ,

The reference must be real. Scheme applied with basic scheme (Figliuzzi
et al, 2016) or polarization-based method (Gallican et al, 2019 ; André et
al, 2021). They use : κ0 “

?
κ1κ2, µ0 “

?
µ1µ2.



Validation : FE-FFT comparison

Stiff inclusion with periodic boundary conditions embedded in a
viscoelastic matrix defined by a Prony series. Local stress σmpxq (2D
section). FEM (Abaqus) vs. FFT.

From Figliuzzi et al, 2016.



Validation : comparison with analytical estimates

Loss angle δ “ I
`

µeff˘ {R
`

µeff˘, periodic array of spheres of radius R
Viscoelastic matrix defined by a Prony series.

f (Hz) R “ 0 R “ 5
Cohen (2004) FFT Cohen (2004) FFT

1 0.033504 0.033504 0.033504 0.033502
5 0.038662 0.038662 0.038661 0.038659

10 0.040469 0.040469 0.040468 0.040466
50 0.04646 0.04646 0.04646 0.046456

100 0.050326 0.050326 0.050325 0.050322
R “ 20 R “ 40

1 0.033479 0.033451 0.033054 0.032757
5 0.038631 0.038598 0.038123 0.037769

10 0.040436 0.040401 0.039895 0.039519
50 0.046421 0.04638 0.045773 0.045326

100 0.050282 0.050237 0.049567 0.049074



FFT maps

Silica and carbon black materials used as nanoscopic fillers to improve
the stiffness of rubbers (from Figliuzzi et al.).
Mean stress field Impσxy q (2D section). Material subjected to strain
loading εxy “ 1%. Frequency : ω “ 1117 Hz.

5123 voxel grids (Figliuzzi et al, 2016)



Effective response

Effective shear modulus µeff vs. frequency ω
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Rigorous bounds on the complex shear and bulk moduli of two-phase
media given by Milton & Berryman (1997)



Viscoelasticity
Comparison with a time-explicit scheme :

rσ1ptqdt
t1

` drσ1ptq “ 2µ0drε1ptq, rσkkptqdt
t1

` drσkkptq “ 3κ0drεkkptq

pεpx; tq “ 0, pσpx; tq “ 0
for t ă t0. For t ě t0, the material is subject to harmonic strain loading :

xpεpx; tqy “ cospωtqε

Take t0 “ π{p2ωq. The stress field σ at time t ` dt is then computed by
explicit time-discretization. For instance, for the deviatoric parts :

∆pσ1px, tq “ 2µ0∆pε1px, tq ´ pσ1px, tq∆t
t1

,

∆pσ1px, tq “ pσ1px, t`∆tq´ pσ1px, tq, ∆pε1px, tq “ pε1px, t`∆tq´ pε1px, tq.
Equivalent to a thermoelastic stress-strain relation with unknown ∆pε and
∆pσ and with applied strain loading :

x∆pε1px, tqy “ ´ω sinpωtq∆tε

See e.g. Badulescu et al (2015).



Viscoelasticity
Example (stiff inclusion in Maxwell matrix, periodic array of spheres,
from Figliuzzi et al.)

0 5 10 15 t (s)
-2

-1

0

1

2

σ
12

, ε
12

ε
12

 (time-
     explicit)σ

12
 (time-

     explicit)

σ
12

(complex
 scheme)

Pros and cons : the Prony series FFT scheme is useful for complex
viscoelastic laws that require a large number of fields at previous time
steps. In the harmonic case, the memory required is only two times that
of the classical “real” schemes. Cons : harmonic regimes only ; must be
linear viscoelasticity.
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Damage in heterogeneous media
Polycrystal subjected to thermal cycles (cooling, re-heating)

Describe damage evolution : initiation, propagation. Strongly nonlinear
problem. Irreversibility.



Variational principle

Total energy of a domain Ω containing cracks along surfaces Γ,
submitted to a deformation field εpxq.

E pε, Γq “ E pεq ` E pΓq “
ż

ΩzΓ
W pεpxqqdx ` γc

ż

Γ
dS

E pεq : stored elastic energy ; E pΓq fracture surface energy, according to
Griffith criterion of fracture ; γc thoughness (specific surface energy).
Variational principle of Francfort and Marigo (JMPS, 1998). The
total energy (over all admissible fields ε) is minimized during the fracture
process :

pε, Γq “ arginfpε,Γq

#

ż

ΩzΓ

1
2εpxq : Cpxq : εpxq ` γc

ż

Γ
dS

+

in elasticity.



Variational principle

Solve :

pε, Γq “ arginfpε,Γq

#

ż

ΩzΓ

1
2εpxq : Cpxq : εpxq ` γc

ż

Γ
dS

+

in the space of physically-admissible strain fields :

ε P Kpεq “ tε; Du : ε “ p∇uqsym, xεy “ εu

(assuming small deformations). At fixed Γ (no damage evolution) : the
stress tensor σ “ C : ε is divergence-free (divσ “ 0, σ ¨ n is the force per
unit surface)

NB : Mumford-Shah functional :

min
pu,Γq

#

ż

ΩzΓ
|u ´ g |2 ` γc

ż

Γ
dS `

ż

ΩzΓ
|∇u|2

+



Variational principle
One-dimensional problem : beam under traction (Bourdin, 2007)

Before fracture, at the onset of fracture, after failure



Phase field models for fracture of homogeneous isotropic
media

The variational principle can not in general be solved numerically.

Regularization : introduction of a phase field Φpxqp0 ď Φpxq ď 1) with
Φpxq ” 1 along the crack and Φpxq “ 0 away from the crack. This
setting requires an additional length scale parameter `.
The volume integral E pεq is replaced by

ş

Ωp1´ Φq2W pεpxqqdx .

The surface integral E pΓq is replaced by γc
ş

Ωp
1
2`Φ2 ` `

2 ∇Φ ¨∇Φqdx
(Bourdin, 2007 ; Bourdin, Francfort and Marigo, 2008).

Resulting variational principle : minimization over admissible stress field
and Φpxq of the volume integrals

arginfpε,Φq
"
ż

Ω
p1´ Φq2W pεpxqqdx ` γc

ż

Ω
dx

ˆ

1
2`Φ2 `

`

2∇Φ ¨∇Φ
˙*

ε P Kpεq “ tε; Du : ε “ p∇uqsym, xεy “ εu

Enough to do initiation and propagation.



Phase field models for fracture of homogeneous isotropic
media

Usually solved by Finite Element Methods.
From Kalthoff and Winkler (1987) (left) and Hokacker (2012) (right).



PDE for the phase field model

Functional minimization provides :

εpxq “ p∇upxqqsym, xεpxqy “ ε,

σ “ p1´ φpxqq2Cpxq : εpxq, divpσq “ 0.

for the linear elastic problem.

For the phase-field problem (Miehe, IJNME 2010) :

2p1´ ΦqH´ γc{`pΦ´ `2∆Φq “ 0

with elastic energy Hpx, tq “ W pεq “ 1
2ε : C : ε acting as “source term”.

Irreversibility : Hpx, tq “ supτăt W pε, τq



Fourier-based method

Unilateral law. Essential in compression. E.g. model of Miehe :
σ “ p1´ φq2C : ε`C : ε´, ε˘ “ ε˘k nk ‘ nk .

Irreversibility. φ can not decrease. Change the source term :
Hpx, tq “ max0ďsďt tΨ`px , squ with Ψ`pεq “ Ψ`pε`q (depends on the
tensile parts of the strain due to unilateral effect).

Anisotropic tenacity (second-order tensor).

Non-zero elastic moduli in regions where φ “ 1 using :
p1´ φpxqq2Cpxq Ñ p1´ φpxq ` kq2Cpxq with k ăă 1
Damping parameter :

2p1´ ΦqH´ γc{`pΦ´ `2∆Φq “ η 9φ



Fourier-based method

Chen and Gelebart (2021) proposed to solve the equation in φ with a
“basic scheme”

φpk`1qpqq “ χkpqq
A0 ` q ¨ q , χkpx “ Bpxq ´ pApx ´ A0qφpxq,

(terms A0 and B detailed in Chen and Gélébart, 2021). χ is the
polarization field for phase-field problem and we use the Green operator
associated to the Helmholtz equation (no pole).

Several strategies are possible (not detailed here) :
“sequential” : solve each problem for ε and φ separately (small time steps
required). Each problem in ε and φ is convex.
“implicit” : solve the full problem at each time step.
Other authors proposed FFT methods for phase field problem, e.g. Jeulin
(IJSS, 2021) or Ernesti et al (2021) who used an implicit solver.



Phase field models for fracture of homogeneous isotropic
media

Phase-field predicted by Chen and Gélébart (2021)



Phase field models for fracture of homogeneous isotropic
media

Comparison with finite element method
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Performances
From Bary et al, 2011 (linear elasticity)



Performances and accuracy

Numerical optimization of microstructures properties with viscoelastic
behavior (Koishi et al, 2017).
4, 000 configurations of 10243 each on TSUBAME supercomputer at
Global Scientific Information and Computing Center in Tokyo Institute of
Technology though the HPCI System Research Project



Performances and accuracy

From Koishi et al, 2017. Use of the rotated scheme with polarization
method.



Performances and accuracy
Dealing with cracks.



Performances and accuracy
From Gasnier et al (2018).



Performances and accuracy



Cracks
From Gasnier et al (2018). Displacement field. Use of different
discretizations.

Liu et al, (2020) report a 5 to 10% difference.



§ Lucarini and Segurado (Computational Mechanics, 2019). Crystal
plasticity with fatigue. Difference of the order of 7%. FFT is 6-7
times faster and allows to compute models with sizes not accessible
using FEM.

§ Vondrejc and de Geus (Journal of Computational and Applied
Mathematics, 2020) : FEM more accurate than FFT when the
material properties display jumps, mixed results obtained when the
material properties vary smoothly.
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Stokes flow

Incompressible Newtonian fluid with viscosity µ :

µ∆u “ ∇ ¨ P (Stokes equation)
u “ 0 (no-slip boundary condition at fluid-solid interface)

divu “ 0 (fluid incompressibility)

Periodic boundary conditions :

Ppxq “ α ¨ x ` φpxq, φ#, u#

Loading : pressure drop α “ x∇ ¨ Py

Permeability κ :
µxuy “ κx∇ ¨ Py “ κ ¨α



FFT methods for Stokes flow
Stokes equation equivalent to :

dpxq “ pgradupxqqsym, dm “ 0,

σpxq “ 2µdpxq ´ PpxqI, Ppxq “ α ¨ x ` φpxq

divσ “ 0

Idea (Bignonnet and Dormieux, 2014) : extend the equations over the
solid phase, treated as an incompressible viscuous fluid with infinite
viscosity (µ “ 8). No-slip boundary condtions automatically met,
however rigid body motion of the solid domain must be prevented. If
there is one connected component spaning the medium, it is sufficient to
enforce u “ 0 at one point in the solid phase or on average.
There must be body forces in the solid phase that counterbalance the
macroscopic fluid pressure gradient.

µpxq “
"

8 solid
µf otherwise. divσ “

"

´α{fs solid
0 otherwise.



FFT methods for Stokes flow

Introduce a reference viscosity µ0 and recast the problem as :

σpqq “ ´Y0pqq ¨ f pqq ´∆0pqq : rdpqq ´ 1
2µ0 : σpxqs

dpσq “ Apxqrσpxq ´ PpxqIs, Apxq “ 1
2µχf pxq `

1
2µs

χspxq

Y0pqq “ i
|q|4 rpδijqk ` δikqj ` δjkqiq|q|2 ´ 2qiqjqk s, f “ divpαkxkq

Iterative scheme (Monchiet and Bonnet, 2009) :

σk`1pqq “ σkpqq ´∆0pqq : dkpqq, σ1pqq ” ´Y0pqq ¨ f pqq

Common choices : µ0 “ µf or µ0 “ 2µf , 4µf (in-between µf and 8).



FFT methods for Stokes flow
Bignonnet and Dormieux : polarization scheme with variational
framework. Introduce a reference viscosity µ0 :

τ pxq “ σpxq ´ 2µ0dpxq

Green function G0, third-order Green operator G0, fourth-order Green
operator Γ0 :

u “ u ` G0 ˚ f ´1
S χSα` G0 ˚ τ ,

d “ ´Γ0 ˚ τ `t G0 ˚ f ´1
S χSα,

with u “ ´f ´2
S χSG0 ˚ χS ¨α “ ´GSS

0 ¨α

Tensors G0, G0 and Γ0 have simple forms in Fourier space (for the
problem in the continuum).
In these methods, the solid phase must form one continuous phase.
Different discretizations (e.g. finite-differences) are possible. See
Bignonnet (2020).



FFT methods for Stokes flow

Method developed by A. Wiegmann (2007). Velocity field evaluated at
the center of the voxel faces, pressure field at the center of the voxels.

With local centered differences, ∆u and ∇ ¨ P evaluated at the center of
voxel faces, and divu at the voxel centers.

∆upxq « ∆hupxq “
ř

i rupx ` eiq ` upx ´ eiq ´ 2upxqs
h2 ,

pBiPqpx ` ei{2q « p∇hPq ¨ ei “
Ppx ` eiq ´ Ppxq

h ,

pdivuqpxq « pdivhuqpxq “
ÿ

i

uipx ` ei{2q ´ uipx ´ ei{2q
h



FFT methods for Stokes flow
No slip boundary conditions ?

Method “FFF” : u “ 0 along blue and black points. Enforces normal and
tangential no-slip boundary conditions.
Discretized system rewritten as

µ∆hu “ ∇hP ` f

The force f takes non-zero values along the fluid-solid interface. Fields P
and u can be computed from f . System solved by conjugate gradient
method. Popisson equation solved by FFTs (Wiegmann, 2007).



Results : 2D cylindrical obstacle

Velocity field (horizontal component). Exact solution obtained using the
asymptotic expansion of Sangani & Acrivos (1981). FFF 1002 voxels.
Error ˆ20.

As expected, the error is maximum along the interface.



Results : 2D cylindrical obstacle
Fluid flow inside anode material used in fuel cells (Abdallah, 2016).
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Topics not addressed here :
§ Dislocations. Bertin, Capolungo, Berbenni, Suquet, Brenner.
§ Strain gradients. Gélébart, Forest.
§ Periodic boundary conditions.
§ Finite strain. Lahellec (2003), Lebensohn (2013), Kabel (2014).

Requires a different Green operator to take into account local
rotations.
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